
Towards Scale-Invariant Graph-related
Problem Solving by Iterative Homogeneous

Graph Neural Networks

Hao Tang
Shanghai Jiao Tong University
tanghaosjtu@gmail.com

Zhiao Huang
UC San Diego

z2huang@eng.ucsd.edu

Jiayuan Gu
UC San Diego

jigu@eng.ucsd.edu

Bao-Liang Lu
Shanghai Jiao Tong University

bllu@sjtu.edu.cn

Hao Su
UC San Diego

haosu@eng.ucsd.edu

Abstract

Current graph neural networks (GNNs) lack generalizability with respect to scales
(graph sizes, graph diameters, edge weights, etc..) when solving many graph analy-
sis problems. Taking the perspective of synthesizing graph theory programs, we
propose several extensions to address the issue. First, inspired by the dependency
of the iteration number of common graph theory algorithms on graph size, we learn
to terminate the message passing process in GNNs adaptively according to the
computation progress. Second, inspired by the fact that many graph theory algo-
rithms are homogeneous with respect to graph weights, we introduce homogeneous
transformation layers that are universal homogeneous function approximators, to
convert ordinary GNNs to be homogeneous. Experimentally, we show that our
GNN can be trained from small-scale graphs but generalize well to large-scale
graphs for a number of basic graph theory problems. It also shows generalizability
for applications of multi-body physical simulation and image-based navigation
problems.

1 Introduction

Graph, as a powerful data representation, arises in many real-world applications [1, 2, 3, 4, 5, 6]. On
the other hand, the flexibility of graphs, including the different representations of isomorphic graphs,
the unlimited degree distributions [7, 8], and the boundless graph scales [9, 10], also presents many
challenges to their analysis. Recently, Graph Neural Networks (GNNs) have attracted broad attention
in solving graph analysis problems. They are permutation-invariant/equivariant by design and have
shown superior performance on various graph-based applications [11, 12, 13, 14, 15].

However, investigation into the generalizability of GNNs with respect to the graph scale is still limited.
Specifically, we are interested in GNNs that can learn from small graphs and perform well on new
graphs of arbitrary scales. Existing GNNs [11, 12, 13, 15] are either ineffective or inefficient under
this setting. In fact, even ignoring the optimization process of network training, the representation
power of existing GNNs is yet too limited to achieve graph scale generalizability. There are at
least two issues: 1) By using a pre-defined layer number [16, 17, 18], these GNNs are not able to
approximate graph algorithms whose complexity depends on graph size (most graph algorithms
in textbooks are of this kind). The reason is easy to see: For most GNNs, each node only uses
information of the 1-hop neighborhoods to update features by message passing, and it is impossible
for k-layer GNNs to send messages between nodes whose distance is larger than k. More formally,

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

01
0.

13
54

7v
1

 [
cs

.L
G

]
 2

6
O

ct
 2

02
0

mailto:tanghaosjtu@gmail.com
mailto:z2huang@eng.ucsd.edu
mailto:jigu@eng.ucsd.edu
mailto:bllu@sjtu.edu.cn
mailto:haosu@eng.ucsd.edu

Loukas [19] proves that GNNs, which fall within the message passing framework, lose a significant
portion of their power for solving many graph problems when their width and depth are restricted;
and 2) a not-so-obvious observation is that, the range of numbers to be encoded by the internal
representation may deviate greatly for graphs of different scales. For example, if we train a GNN to
solve the shortest path problem on small graphs of diameter k with weight in the range of [0, 1], the
internal representation could only need to build the encoding for the path length within [0, k]; but if
we test this GNN on a large graph of diameter K � k with the same weight range, then it has to use
and transform the encoding for [0,K]. The performance of classical neural network modules (e.g.
the multilayer perceptron in GNNs) are usually highly degraded on those out-of-range inputs.

To address the pre-defined layer number issue, we take a program synthesis perspective, to design
GNNs that have stronger representation power by mimicking the control flow of classical graph
algorithms. Typical graph algorithm, such as Dijkstra’s algorithm for shortest path computation, are
iterative. They often consist of two sub-modules: an iteration body to solve the sub-problem (e.g.,
update the distance for the neighborhood of a node as in Dijkstra), and a termination condition to
control the loop out of the iteration body. By adjusting the iteration numbers, an iterative algorithm can
handle arbitrary large-scale problems. We, therefore, introduce our novel Iterative GNN (IterGNN)
that equips ordinary GNN with an adaptive and differentiable stopping criterion to let GNN iterate
by itself, as shown in Figure 1. Our stopping condition is adaptive to the inputs, supports arbitrarily
large iteration numbers, and, interestingly, is able to be trained in an end-to-end fashion without any
direct supervision.

We also give a partial solution to address the issue of out-of-range number encoding, if the underlying
graph algorithm is in a specific hypothesis class. More concretely, the solutions to many graph
problems, such as the shortest path problem and TSP problem, are homogeneous with respect to
the input graph weights, i.e., the solution scales linearly with the magnitudes of the input weights.
To build GNNs with representation power to approximate the solution to such graph problems, we
further introduce the homogeneous inductive-bias. By assuming the message processing functions are
homogeneous, the knowledge that neural networks learn at one scale can be generalized to different
scales. We build HomoMLP and HomoGNN as powerful approximates of homogeneous functions
over vectors and graphs, respectively.

We summarize our contributions as follows: (1) We propose IterGNN to approximate iterative
algorithms, which avoids fixed computation steps in previous graph neural networks, and provides the
potential for solving arbitrary large-scale problems. (2) The homogeneous prior is further introduced
as a powerful inductive bias for solving many graph-related problems. (3) We prove the universal
approximation theorem of HomoMLP for homogeneous functions and also prove the generalization
error bounds of homogeneous neural networks under proper conditions. (4) In experiments, we
demonstrate that our methods can generalize on various tasks and have outperformed baselines.

2 Related Work

Graph Algorithm Learning. Despite the success of GNNs (mostly come within the message passing
framework [14, 15]) in many fields [13, 20, 11], few works have reported remarkable results on
solving traditional graph-related problems, such as the shortest path problem, by neural networks,
especially when the generalizability with regard to scales is taken into account. Neural Turing
Machine [21, 22] first reported performance on solving the shortest path problem on small graphs
using deep neural networks and Neural Logic Machine [23] solved the shortest path problem on
graphs with limited diameters. Recently, [24], [25] and [26] achieved positive performance on graph
algorithm learning on relatively large graphs using GNNs. However, [24, 25] require per-layer
supervision to train, and models in [26] can not extend to large graph scales due to their bounded
number of message passing steps. As far as we know, no previous work has solved the shortest path
problem by neural networks on graphs of diameters larger than 100.

Iterative Algorithm Approximation. Inspired by the success of traditional iterative algorithms [27,
28], several works were proposed to incorporate the iterative architecture into neural networks for
better generalizability [18, 29], more efficiency [30], or to support end-to-end training [16, 17].
However, none of them supports adaptive and unbounded iteration numbers and is therefore not
applicable for approximating general iterative algorithms over graphs of any sizes.

2

INPUT

Iteration

If stop?

OUTPUT

Yes
No

GNN

If stop?

INPUT

OUTPUT

Yes
No

(a) iterative algorithms (b) general illustration of
Iterative GNN

(c) concrete unfolded illustration of Iterative GNN at one iteration

INPUT

GNNGNN GNN

Termination
probability

Termination
probability

Termination
probability If stop?

OUTPUT

Yes

No

One iteration

Figure 1: (a) The illustration of general iterative algorithms. The iteration body is repeated until the
stopping criterion is satisfied. (b) Illustration of IterGNN as a combination of GNNs and iterative
module. (c) A detailed illustration of Iterative GNN. It unfolds the computational flow of IterGNN.
Other than the normal data flow (marked as blue), there is another control flow (marked as orange)
that serves both as an adaptive stopping criterion and as a data flow controller.

Differentiable Controlling Flows. In recent years, multiple works have been proposed in the graph
representation learning field that integrate controlling into neural networks to achieve flexible data-
driven control. For example, DGCNN [31] implemented a differentiable sort operator (sort pooling) to
build more powerful readout functions. Graph U-Net [32, 33] designed an adaptive pooling operator
(TopK pooling) to support flexible data-driven pooling operations. All these methods achieved the
differentiability by relaxing and multiplying the controlling signals with the neural networks’ hidden
representations. Inspired by their works, our method also differentiates the iterative algorithm by
relaxing and multiplying the stopping criterion’s output into neural networks’ hidden representations.

Adaptive Depth of Neural Networks. The final formulation of our method is generally similar to
the previous adaptive computation time algorithm (ACT) [34] for RNNs or spatially ACT [35, 36] for
CNNs, however, with distinct motivations and formulation details. The numbers of iterations for ACT
are usually small by design (e.g.the formulation of regularizations and halting distributions). Con-
trarily, Our method is designed to fundamentally improve the generalizability of GNNs w.r.t. scales
by generalizing to much larger iteration numbers. Several improvements are proposed accordingly.
The recent flow-based methods (e.g. the Graph Neural ODE [37]) are also potentially able to provide
adaptive layer numbers. However, with no explicit iteration controller, they are not a straightforward
solution to approximate iterative algorithms and to encode related inductive biases.

3 Backgrounds

Graphs and graph scales. Each graph G := (V,E) consists of a set of nodes V and a set of
edges (pairs of nodes) E. To notate graphs with attributes, we use ~xv for node attributes of node
v ∈ V and use ~xe for edge attributes of edge e ∈ E. We consider three graph properties to
quantify the graph scales, which are the number of nodes N := |V |, which is also called the
graph size, the graph diameter δG := maxu,v∈V d(u, v), and the scale of attributes’ magnitudes
H := maxv∈V ||~xv||+ maxe∈E ||~xe||. Here, || · || denotes an arbitrary norm of vectors and d(u, v)
denotes the length of the shortest path from node u to node v, which is also called the distance
between node u and node v for undirected graphs. We assume graph scales are unbounded but finite,
and the aim is to generalize learned knowledge to graphs of arbitrary scales.

Graph Neural Networks. We describe a known class of GNNs that encompasses many state-of-art
networks, including GCN [38], GAT [39], GIN [40], and Interaction Networks [4], among others.
Networks with a global state [15] or utilizing multi-hop information per layer [41, 42, 43] can
often be re-expressed within this class, as discussed in [19]. The class of GNNs generalizes the
message-passing framework [14] to handle edge attributes. Each layer of it can be written as

~h(l+1)
v = f

(l)
θ (~h(l)v , {~xe : e ∈ NE(v)}, {~h(l)v′ : v′ ∈ NV (v)}). (1)

~h
(l)
v is the node feature vector of node v at layer l. NV (v) and NE(v) denote the sets of nodes and

edges that are directly connected to node v (i.e. its 1-hop neighborhood). f (l)θ is a parameterized
function, which is usually composed of several multilayer perceptron modules and several aggregation
functions (e.g. sum/max) in practice. Readers are referred to [11, 12, 13, 15] for thorough reviews.

3

4 Method

We propose Iterative GNN (IterGNN) and Homogeneous GNN (HomoGNN) to improve the gen-
eralizability of GNNs with respect to graph scales. IterGNN is first introduced, in Section 4.1, to
enable adaptive and unbounded iterations of GNN layers so that the model can generalize to graphs
of arbitrary scale. We further introduce HomoGNN, in Section 4.2, to partially solve the problem
of out-of-range number encoding for graph-related problems. We finally describe PathGNN that
improves the generalizability of GNNs for distance-related problems by improving the algorithm
alignments [26] to the Bellman-Ford algorithm in Section 4.3.

4.1 Iterative module

Algorithm 1: Iterative module. g is the stop-
ping criterion and f is the iteration body

input: initial feature x; stopping threshold ε
k ← 1
h0 ← x
while

∏k−1
i=1 (1− ci) > ε do

hk ← f(hk−1)
ck ← g(hk)
k ← k + 1

end while
return h =

∑k−1
j=1

(∏j−1
i=1 (1− ci)

)
cjhj

The core of IterGNN is a differentiable iterative
module. It executes the same GNN layer repeat-
edly until a learned stopping criterion is met. We
present the pseudo-codes in Algorithm 1. At
time step k, the iteration body f updates the hid-
den states as hk = f(hk−1); the stopping crite-
rion function g then calculates a confidence score
ck = g(hk) ∈ [0, 1] to describe the probability of
the iteration to terminate at this step. The mod-
ule determines the number of iterations using a
random process based on the confidence scores
ck. At each time step k, the random process has a
probability of ck to terminate the iteration and to
return the current hidden states hk as the output.
The probability for the whole process to return
hk is then pk =

(∏k−1
i=1 (1− ci)

)
ck, which is the

product of the probabilities of continuing the iteration at steps from 1 to k − 1 and stopping at step
k. However, the sampling procedure is not differentiable. Instead, we execute the iterative module
until the “continue” probability

∏k−1
i=1 (1− ci) is smaller than a threshold ε and return an expectation

h =
∑k
j=1 p

jhj at the end. The gradient to the output h thus can optimize the hidden states hk and
the confidence scores ck jointly.

For example, assume ci = 0 for i < k, ck = a, ck+1 = b, and (1 − a)(1 − b) < ε. If we
follow the pre-defined random process, for steps before k, the iteration will not stop as ci = 0 for
i < k. For the step k, the process has a probability of a to stop and output hk; otherwise, the
iteration will continue to the step k + 1. Similarly, at the step k + 1, the iteration has a probability
of b to stop and output hk+1. We stop the iteration after step k + 1 as the “continue” probability∏k
i=1(1− ci) = (1− a)(1− b) is negligible. The final output is the expectation of the output of the

random process h = ahk + (1− a)bhk+1.

By setting f and g as GNNs, we obtain our novel IterGNN, as shown in Figure 1. The features are
associated with nodes in the graph as {~h(k)v : v ∈ V }. GNN layers as described in Eq. 1 are adopted
as the body function f to update the node features iteratively {~h(k)v : v ∈ V } = GNN(G, {~h(k−1)v :

v ∈ V }, {~he : e ∈ E}). We build the termination probability module as g by integrating a readout
function and an MLP. The readout function (e.g. max/mean pooling) summarizes all node features
{~h(k)v : v ∈ V } into a fixed-dimensional vector ~h(k). The MLP predicts the confidence score as
ck = sigmoid(MLP(~h(k))). The sigmoid function is utilized to ensure the output of g is between 0
and 1. With the help of our iterative module, IterGNN can adaptively adjust the number of iterations.
Moreover, it can be trained without any supervision of the stopping condition.

Our iterative module can resemble the control flow of many classical graph algorithms since the
iteration of most graph algorithms depends on the size of the graph. For example, Dijkstra’s
algorithm [27] has a loop to greedily propagate the shortest path from the source node. The number
of iterations to run the loop depends linearly on the graph size. Ideally, we hope that our f can
learn the loop body and g can stop the loop when all the nodes have been reached from the source.
Interestingly, the experiment result shows such kind behavior. This structural level of the computation

4

Out-of-distribution
Unexpected Behaviors Unexpected Behaviors

Generalize by
Homogeneous

(b) Behaviors of MLP (c) Behaviors of Homogeneous MLP(a) = , ∀ > 0, ∈ 2

Figure 2: (a) An example of homogeneous functions. (b-c) Illustration of the improved generalizability
by applying the homogeneous prior. Knowledge learned from the training samples not only can be
generalized to samples of the same data distribution as ordinary neural networks, as shown in (b), but
also can be generalized to samples of the scaled data distributions, as shown in (c).

allows superior generalizability, which agrees with the findings in [26] that improved algorithm
alignment can increase network generalizability. In contrast, without a dynamic iterative module,
previous GNNs have much inferior ability to generalize to larger graphs.

We state more details of IterGNN in Appendix, including the memory-efficient implementation, the
theoretical analysis of representation powers, the node-wise iterative module to support unconnected
graphs, and the decaying confidence mechanism to achieve much larger iteration numbers during
inference in practice (by compensating the nonzero properties of the sigmoid function in g).

4.2 Homogeneous prior

The homogeneous prior is introduced to improve the generalizability of GNNs for out-of-range
features/attributes. We first define the positive homogeneous property of a function:
Definition 1. A function f over vectors is positive homogeneous iff f(λ~x) = λf(~x) for all λ > 0.

A function f over graphs is positive homogeneous iff for any graphG = (V,E) with node attributes ~xv
and edge attributes ~xe, f(G, {λ~xv : v ∈ V }, {λ~xe : e ∈ E}) = λf(G, {~xv : v ∈ V }, {~xe : e ∈ E})

The solutions to most graph-related problems are positive homogeneous, such as the length of the
shortest path, the maximum flow, graph radius, and the optimal distance in the traveling salesman
problem.

The homogeneous prior tackles the problem of different magnitudes of features for generalization.
As illustrated in Figure 2, by assuming functions as positive homogeneous, models can generalize
knowledge to the scaled features/attributes of different magnitudes. For example, let us assume two
datasets D and Dλ that are only different on magnitudes, which means Dλ := {λx : x ∈ D} and
λ > 0. If the target function f and the function FA represented by neural networks A are both
homogeneous, the prediction error on dataset Dλ then scales linearly w.r.t. the scaling factor λ:∑

x∈Dλ

||f(x)− FA(x)|| =
∑
x′∈D

||f(λx′)− FA(λx′)|| = λ
∑
x′∈D

||f(x′)− FA(x′)||. (2)

We design the family of GNNs that are homogeneous, named HomoGNN, as follows: simply remove
all the bias terms in the multi-layer perceptron (MLP) used by ordinary GNNs, so that all affine
transformations degenerate to linear transformations. Additionally, only homogeneous activation
functions are allowed to be used. Note that ReLU is a homogeneous activation function. The original
MLP used in ordinary GNNs become HomoMLP in HomoGNNs afterward.

4.2.1 Theoretical analysis of HomoGNN and HomoMLP

We provide theoretical proofs showing that, if the target function is homogeneous, low generalization
errors and low training errors are both achievable using the pre-defined homogeneous neural networks
under proper conditions. We first formalize the generalization error bounds of homogeneous neural
networks on approximating homogeneous functions under some assumptions, by extending the
previous example to more general cases. To show that low training errors are achievable, we further
prove that HomoMLP is a universal approximator of the homogeneous functions under proper

5

conditions, based on the universal approximation theorem for width-bounded ReLU networks [44].
We present propositions stating that HomoGNN and HomoMLP can only represent homogeneous
functions, along with the proofs for all theorems, in the Appendix.

Let training samples Dm = {x1, x2, · · ·xm} be independently sampled from the distribution Dx,
then if we scale the training samples with the scaling factor λ ∈ R+ which is independently
sampled from the distribution Dλ, we get a “scaled” distribution Dλx , which has a density function
PDλx (z) :=

∫
λ

∫
x
δ(λx = z)PDλ(λ)PDx(x) dxdλ. The following theorem bounds the generalization

error bounds on Dλx :
Theorem 1. (Generalization error bounds of homogeneous neural networks with independent scaling
assumption). For any positive homogeneous functions function f and neural network FA, let β
bounds the generalization errors on the training distribution Dx , i.e., Ex∼Dx |f(x) − FA(x)| ≤
1
m

∑m
i=1 |f(xi)− FA(xi)|+ β, then the generalization errors on the scaled distributions Dλx scale

linearly with the expectation of scales EDλ [λ]:

Ex∼Dλx |f(x)− FA(x)| = EDλ [λ]Ex∼Dx |f(x)− FA(x)| ≤ EDλ [λ](
1

m

m∑
i=1

|f(xi)− FA(xi)|+ β) (3)

Theorem 2. (Universal approximation theorem for width-bounded HomoMLP). For any positive-
homogeneous Lebesgue-integrable function f : X 7→ R, where X is a Lebesgue-measurable compact
subset of Rn, and for any ε > 0, there exists a finite-layer HomoMLP A′ with width dm ≤ 2(n+ 4),
which represents the function FA′ such that

∫
X |f(x)− FA′(x)|dx < ε.

4.3 Path graph neural networks

We design PathGNN to imitate one iteration of the classical Bellman-Ford algorithm. It inherits the
generalizability of the Bellman-Ford algorithm and the flexibility of the neural networks. Specifically,
the Bellman-Ford algorithm performs the operation disti = min(disti,minj∈N (i)(distj + wji))
iteratively to solve the shortest path problem, where disti is the current estimated distance from
the source node to the node i, and wji denotes the weight of the edge from node j to node i. If we
consider disti as node features and wij as edge features, one iteration of the Bellman-Ford algorithm
can be exactly reproduced by GNN layers as described in Eq. 1:

~hi = min(~hi, min
j∈N (i)

(~hj + ~xji)) ≡ −max(−~hi, max
j∈N (i)

(−~hj − ~xji)).

To achieve more flexibilities for solving problems other than the shortest path problem, we integrate
neural network modules, such as MLPs to update features or the classical attentional-pooling to
aggregate features, while building the PathGNN layers. A typical variant of PathGNN is as follows:

αji = softmax({MLP1(~hj ;~hi; ~xji) for j ∈ N (i)});
~h′i =

∑
j∈N (i) αjiMLP2(~hj ;~hi; ~xji); ~hi = max(~hi,~h

′
i).

We state the detailed formulation and variations of PathGNN layers in the Appendix.

5 Experiments

Our experimental evaluation aims to study the following empirical questions: (1) Will our proposals,
the PathGNN layer, the homogeneous prior, and the iterative module, improve the generalizability
of GNNs with respect to graph scales that are the number of nodes, the diameter of graphs, and the
magnitude of attributes? (2) Will our iterative module adaptively change the iteration numbers and
consequently learn an interpretable stopping criterion in practice? (3) Can our proposals improve the
performance of general graph-based reasoning tasks such as those in physical simulation, image-based
navigation, and reinforcement learning?

Graph theory problems and tasks. We consider three graph theory problems, i.e., shortest path,
component counting, and Traveling Salesman Problem (TSP), to evaluate models’ generalizability
w.r.t. graph scales. We build a benchmark by combining multiple graph generators, including
Erdos-Renyi (ER), K-Nearest-Neighborhoods graphs (KNN), planar graphs (PL), and lobster graphs

6

(a) Physical Simulation (b) Symbolic PacMan (c) Image-based Navigation

Figure 3: Figure (a) shows a set of Newton’s balls in the physical simulator. The yellow arrow is the
moving direction of the first ball. Figure (b) shows our symbolic PacMan environment. Figure (c)
illustrates our image-based navigation task in a RPG-game environment.

(Lob), so that the generated graphs can have more diverse properties. We further apply our proposals
to three graph-related reasoning tasks, i.e., physical simulation, symbolic Pacman, and image-based
navigation, as illustrated in Figure 3. The generation processes and the properties of datasets are
listed in the Appendix.

Models and baselines. Previous problems and tasks can be formulated as graph regres-
sion/classification problems. We thus construct models and baselines following the common prac-
tice [15, 31, 40]. We stack 30 GCN [38]/GAT [39] layers to build the baseline models. GIN [40]
is not enlisted since 30-layer GINs do not converge in most of our preliminary experiments. Our
“Path” model stacks 30 PathGNN layers. Our “Homo-Path” model replaces GNNs and MLPs in the
“Path” model with HomoGNNs and HomoMLPs. Our “Iter-Path” model adopts the iterative module
to control the iteration number of the GNN layer in the “Path” model. The final “Iter-Homo-Path”
integrates all proposals together. Details are in the Appendix.

Training Details. We utilize the default hyper-parameters to train models. We generate 10000
samples for training, 1000 samples for validation, and 1000 samples for testing. The only two
tunable hyper-parameter in our experiment is the epoch number (10 choices) and the formulation of
PathGNN layers (3 choices). Validation datasets are used to tune them. Specially for the component
counting problem, we incorporate the random initialization of node features so that GNNs have more
representation powers to distinguish non-isomorphic graphs [40, 41, 45, 46]. More details are listed
in the Appendix.

5.1 Solving graph theory problems

Generalize w.r.t. graph sizes and graph diameters. We present the generalization performance
for all three graph theory problems in Table 1. Models are trained on graphs of sizes within [4, 34)
and are evaluated on graphs of larger sizes such as 100 (for shortest path and TSP) and 500 (for
component counting so that the diameters of components are large enough). The relative loss metric
is defined as |y − ŷ|/|y|, given a label y and a prediction ŷ. The results demonstrate that each of
our proposals improves the generalizability on almost all problems. Exceptions happen on graphs
generated by ER. It is because the diameters of those graphs are 2 with high probability even though
the graph sizes are large. Our final model, Iter-Homo-Path, which integrates all proposals, performs
much better than the baselines such as GCN and GAT. The performance on graphs generated by KNN
and PL further supports the analysis. The concrete results are presented in the Appendix due to space
limitations. We also evaluated a deeper Path model, i.e., with 100 layers, on the weighted shortest
path problem (Lob). The generalization performance (relative loss≈ 0.13) became even worse.

We then explore models’ generalizability on much larger graphs on the shortest path problem
using Lob to generate graphs with larger diameters. As shown in Table 2, our model achieves a
100% success rate of identifying the shortest paths on graphs with as large as 5000 nodes even though
it is trained on graphs of sizes within [4, 34). As claimed, the iterative module is necessary for
generalizing to graphs of much larger sizes and diameters due to the message passing nature of GNNs.
The iterative module successfully improves the performance from ∼ 60% to 100% on graphs of sizes
≥ 500.

7

Table 1: Generalization performance on graph algorithm learning and graph-related reasoning.
Models are trained on graphs of smaller sizes (e.g., within [4, 34) or ≤ 10× 10) and are tested on
graphs of larger sizes (e.g., 50, 100, 500, 16× 16 or 33× 33). The metric for the shortest path and
TSP is the relative loss. The metric for component counting is accuracy. The metric for physical
simulation is the mean square error. The metric for image-based navigation is the success rate.

Graph Theory Problems Graph-related Reasoning
Shortest Path Component Cnt. TSP Physical sim. Image-based Navi.

Models ER Lob ER Lob 2D 50 100 16× 16 33× 33
GCN [38] 0.1937 0.44 0.0% 0.0% 0.52 42.18 121.14 34.2% 28.9%
GAT [39] 0.1731 0.28 24.4 % 0.0% 0.18 >1e4 >1e4 56.7% 44.5%

Path (ours) 0.0003 0.29 82.3% 77.2% 0.16 20.24 27.67 85.6% 65.1%
Homo-Path (ours) 0.0008 0.27 91.9% 83.9% 0.14 20.48 21.45 87.8% 69.3%

Iter-Path (ours) 0.0005 0.09 86.7% 96.1% 0.08 0.13 1.68 89.4% 78.6%
Iter-Homo-Path (ours) 0.0007 0.02 99.6% 97.5% 0.07 0.07 2.01 98.8% 91.7%

Table 2: Generalization performance on the shortest path problem with lobster graphs. During
training, node numbers are within [4, 34) for unweighted problems (whose metric is the success rate),
and edge weights are within [0.5, 1.5) for weighted problems (whose metric is the relative loss).

Generalize w.r.t. sizes and diameters - unweighted w.r.t. magnitudes - weighted
20 100 500 1000 5000 [0.5, 1.5) [1, 3) [2, 6) [8, 24)

GCN [38] 66.6 25.7 5.5 2.4 0.4 0.31 0.37 0.49 0.56
GAT [39] 100.0 42.7 10.5 5.3 0.9 0.13 0.29 0.49 0.55

Path (ours) 100.0 62.9 20.1 10.3 1.6 0.06 0.22 0.44 0.54
Homo-Path (ours) 100.0 58.3 53.7 50.2 1.6 0.03 0.03 0.03 0.03

Iter-Homo-Path (ours) 100.0 100.0 100.0 100.0 100.0 0.01 0.04 0.06 0.08

Ablation studies and comparison. We conduct ablation studies to exhibit the benefits of our
proposals using the unweighted shortest path problem on lobster graphs with 1000 nodes in Table 3.
The models are built by replacing each proposal in our best Iter-Homo-Path model with other possible
substitutes in the literature. For the iterative module, other than the simplest paradigm utilized in
Homo-Path that stacks GNN layers sequentially, we also compare it with the ACT algorithm [34] and
the fixed-depth weight-sharing paradigm [18, 16], resulting in the “ACT-Homo-Path” and “Shared-
Homo-Path” models. The ACT algorithm provides adaptive but usually short iterations of layers
(see Figure 4 and Appendix). The weight-sharing paradigm iterates modules for predefined times
and assumes that the predefined iteration number is large enough. We set its iteration number to
the largest graph size in the dataset. Homo-Path and ACT-Homo-Path perform much worse than
Iter/Shared-Homo-Path because of the limited representation powers of shallow GNNs. Shared-
Homo-Path performs worse than our Iter-Homo-Path, possibly because of the accumulated errors
after unnecessary iterations. For the homogeneous prior, we build “Iter-Path” by simply removing the
homogeneous prior. It performs much worse than Iter-Homo-Path because of the poor performance
of MLPs on out-of-distribution features. For PathGNN, we build “Iter-Homo-GCN” and “Iter-Homo-
GAT” by replacing PathGNN with GCN and GAT. Their bad performance verifies the benefits of
better algorithm alignments [26].

Iter-Homo-Path
100.0

Homo-Path Iter-Path
53.7 48.9

ACT-Homo-Path Iter-Homo-GAT
52.7 2.9

Shared-Homo-Path Iter-Homo-GCN
91.7 1.4

Table 3: Ablation studies of generalization per-
formance for the shortest path problem on lobster
graphs with 1000 nodes. Metric is the success rate.

Figure 4: The iteration numbers of GNN layers
w.r.t. the distances from the source node to the
target node for the shortest path problem.

8

Generalize w.r.t. magnitudes of attributes. We evaluate the generalizability of models w.r.t.
magnitudes of attributes using the weighted shortest path length problem, as shown in Table 2. The
edge weights are randomly sampled from [0.5, 1.5) during training and are sampled from [1, 3), [2, 6),
and [8, 24) during evaluations. The distributions of node numbers remain the same. As claimed, our
models successfully generalize to graphs of different magnitudes with far better performance than
baselines. Notably, the Homo-Path model even achieves the same performance (relative loss ≈ 0.03)
for all scales of magnitudes, which experientially supports Theorem 1. The Iter-Homo-Path model
performs slightly worse because the sigmoid function in the iterative module is not homogeneous.

Interpreting stopping criterion learned by the iterative module. We show that our
Iter-Homo-Path model learned the optimal stopping criterion for the unweighted shortest path prob-
lem in Figure 4. Typically, to accurately predict the shortest path of lengths d on undirected graphs,
the iteration number of GNN layers is at least d/2 due to the message passing nature of GNNs (see
Appendix for details). Our iterative module learned such optimal stopping criterion. The Iter-Homo-
Path model adaptively increases the iteration numbers w.r.t. the distances and, moreover, stops timely
when the information is enough.

5.2 General reasoning tasks

Physical simulation. We evaluate the generalizability of our models by predicting the moving
patterns between objects in a physical simulator. We consider an environment called Newton’s ball:
all balls with the same mass lie on a friction-free pathway. With the ball at one end moving towards
others, our model needs to predict the motion of the balls of both ends at the next time step. The
metric is the mean squared error. Models are trained in worlds with [4, 34) balls and are tested in
worlds with 100 balls. As shown in Table 1, the Iter-Homo-Path model and the Iter-Path model
significantly outperform others, demonstrating the advantages of our iterative module for improving
generalizability w.r.t. scales. The homogeneous prior is not as beneficial since the target functions
are not homogeneous.

Symbolic PacMan. To show that our iterative module can improve reinforcement learning, we
construct a symbolic PacMan environment with similar rules to the PacMan in Atari [47]. The
environment contains a map with dots and walls. The agent needs to figure out a policy to quickly
“eat” all dots while avoiding walls on the map to maximize the return. We abstract the observations as
graphs using the landmark [48]. We adopt Double Q learning [49] to train the policy. Unlike original
Atari PacMan, our environment is more challenging because we randomly sample the layout of maps
for each episode, and we test models in environments with different numbers of dots and walls. The
agent cannot just remember one policy to be successful but needs to learn to do planning according to
the current observation. The metric is the success rate of eating dots. Our IterGNN (97.5%) performs
much better than baselines, CNN (91.5%) and PointNet [50] (29.0%). Our IterGNN also shows
remarkable generalizability among different environment settings. For example, even though the
models are trained in environments with 10 dots and 8 walls, our IterGNN achieves a 94.0% success
rate in environments with 10 dots and 15 walls and 93.4% in environments with 8 walls and 20 dots.
The tables that list the generalization performance of IterGNN, GCN, and PointNet in 30 different
settings of environments are presented in the Appendix to save space.

Image-based navigation. We show the benefits of the differentiability of a generalizable reasoning
module using the image-based navigation task. The model needs to plan the shortest route from the
source to target on 2D images with obstacles. However, the properties of obstacles are not given as a
prior, and the model must discover them based on image patterns during training. We simplify the
task by defining each pixel as obstacles merely according to its own pixel values. As stated in Table 1,
our Iter-Homo-Path model successfully solves the task. The model achieves success rates larger than
90% for finding the shortest paths on images of size 16× 16, and 33× 33, while it is only trained on
images of size ≤ 10× 10. All of our proposals help improve generalizability.

6 Conclusion

We propose an iterative module and the homogeneous prior to improve the generalizability of GNNs
w.r.t. graph scales. Experiments show that our proposals do improve the generalizability for solving
multiple graph-related problems and tasks.

9

7 Acknowledgements

H. Tang and B. -L. Lu were supported in part by the National Key Research and Development
Program of China (2017YFB1002501), the National Natural Science Foundation of China (61673266
and 61976135), SJTU Trans-med Awards Research (WF540162605), the Fundamental Research
Funds for the Central Universities, and the 111 Project. H. Su, Z. Huang, and J. Gu were supported
by the NSF grant IIS-1764078. We specially thank Zhizuo Zhang, Zhiwei Jia, and Chutong Yang for
the useful discussions, and Wei-Long Zheng, Bingyu Shen and Yuming Zhao for reviewing the paper
prior to submission.

8 Broader Impact

Our methods provide general tools to improve the generalizability of GNNs with respect to scales.
This work can thus be applied to many applications of GNNs, such as natural language processing,
traffic prediction, and recommendation systems. They have many potential positive impact in the
society. For example, better traffic prediction enables shorter traffic time for all vehicles, which could
help protect the environment. Improved recommendation system could promote the transition of
information for more productivity and more fairness. Moreover, by improving the generalizability
with respect to scales, models can be trained on graphs of much smaller scales than reality. It reduces
the cost of collecting and storing large datasets with large samples, which can then alleviate the risks
of violating privacy and of harming the environment. On the other hand, this work may also have
negative consequences. Improving techniques in the field of natural language processing can help
monitor and collect personal information of each individual. Stronger recommendation system can
also hurt the fairness as different information targeted to different groups of people.

References
[1] Schlichtkrull, M., T. N. Kipf, P. Bloem, et al. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference, pages 593–607. Springer, 2018.
[2] Shang, C., Y. Tang, J. Huang, et al. End-to-end structure-aware convolutional networks for

knowledge base completion. In Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pages 3060–3067. 2019.

[3] Fan, W., Y. Ma, Q. Li, et al. Graph neural networks for social recommendation. In The World
Wide Web Conference, pages 417–426. ACM, 2019.

[4] Battaglia, P., R. Pascanu, M. Lai, et al. Interaction networks for learning about objects, relations
and physics. In Advances in Neural Information Processing Systems, pages 4502–4510. 2016.

[5] Sanchez-Gonzalez, A., N. Heess, J. T. Springenberg, et al. Graph networks as learnable
physics engines for inference and control. In J. Dy, A. Krause, eds., Proceedings of the 35th
International Conference on Machine Learning, vol. 80 of Proceedings of Machine Learning
Research, pages 4470–4479. PMLR, Stockholmsmässan, Stockholm Sweden, 2018.

[6] Liu, X., Z. Luo, H. Huang. Jointly multiple events extraction via attention-based graph
information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1247–1256. 2018.

[7] Muchnik, L., S. Pei, L. C. Parra, et al. Origins of power-law degree distribution in the
heterogeneity of human activity in social networks. Scientific reports, 3:1783, 2013.

[8] Seshadri, M., S. Machiraju, A. Sridharan, et al. Mobile call graphs: beyond power-law and
lognormal distributions. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, pages 596–604. ACM, 2008.

[9] Ying, R., R. He, K. Chen, et al. Graph convolutional neural networks for web-scale recommender
systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 974–983. ACM, 2018.

[10] Zang, C., P. Cui, C. Faloutsos, et al. On power law growth of social networks. IEEE Transactions
on Knowledge and Data Engineering, 30(9):1727–1740, 2018.

[11] Wu, Z., S. Pan, F. Chen, et al. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–21, 2020.

10

[12] Zhang, Z., P. Cui, W. Zhu. Deep learning on graphs: A survey. IEEE Transactions on Knowledge
and Data Engineering, pages 1–1, 2020.

[13] Zhou, J., G. Cui, Z. Zhang, et al. Graph neural networks: A review of methods and applications.
arXiv preprint arXiv:1812.08434, 2018.

[14] Gilmer, J., S. S. Schoenholz, P. F. Riley, et al. Neural message passing for quantum chemistry.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1263–1272. JMLR. org, 2017.

[15] Battaglia, P. W., J. B. Hamrick, V. Bapst, et al. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261, 2018.

[16] Li, Y., R. S. Zemel. Mean field networks. ICML workshop on Learning Tractable Probabilistic
Models, 2014.

[17] Zheng, S., S. Jayasumana, B. Romera-Paredes, et al. Conditional random fields as recurrent
neural networks. In Proceedings of the IEEE international conference on computer vision,
pages 1529–1537. 2015.

[18] Tamar, A., Y. Wu, G. Thomas, et al. Value iteration networks. In Advances in Neural Information
Processing Systems, pages 2154–2162. 2016.

[19] Loukas, A. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations. 2020.

[20] Goyal, P., E. Ferrara. Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Systems, 151:78–94, 2018.

[21] Graves, A., G. Wayne, I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

[22] Graves, A., G. Wayne, M. Reynolds, et al. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471, 2016.

[23] Dong, H., J. Mao, T. Lin, et al. Neural logic machines. In International Conference on Learning
Representations. 2019.

[24] Veličković, P., R. Ying, M. Padovano, et al. Neural execution of graph algorithms. In Interna-
tional Conference on Learning Representations. 2020.

[25] Veličković, P., L. Buesing, M. C. Overlan, et al. Pointer graph networks. 2020.
[26] Xu, K., J. Li, M. Zhang, et al. What can neural networks reason about? In International

Conference on Learning Representations. 2020.
[27] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.
[28] Blei, D. M., A. Kucukelbir, J. D. McAuliffe. Variational inference: A review for statisticians.

Journal of the American statistical Association, 112(518):859–877, 2017.
[29] Selsam, D., M. Lamm, B. Bünz, et al. Learning a SAT solver from single-bit supervision. In

International Conference on Learning Representations. 2019.
[30] Dai, H., Z. Kozareva, B. Dai, et al. Learning steady-states of iterative algorithms over graphs.

In International Conference on Machine Learning, pages 1114–1122. 2018.
[31] Zhang, M., Z. Cui, M. Neumann, et al. An end-to-end deep learning architecture for graph

classification. In AAAI, pages 4438–4445. 2018.
[32] Gao, H., S. Ji. Graph u-nets. International Conference on Machine Learning (ICML), 2019.
[33] Cangea, C., P. Veličković, N. Jovanović, et al. Towards sparse hierarchical graph classifiers. the

32nd Annual Conference on Neural Information Processing Systems (NeurIPS), 2018.
[34] Graves, A. Adaptive computation time for recurrent neural networks. arXiv preprint

arXiv:1603.08983, 2016.
[35] Figurnov, M., M. D. Collins, Y. Zhu, et al. Spatially adaptive computation time for residual

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1039–1048. 2017.

[36] Eyzaguirre, C., A. Soto. Differentiable adaptive computation time for visual reasoning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020.

11

[37] Poli, M., S. Massaroli, J. Park, et al. Graph neural ordinary differential equations. arXiv preprint
arXiv:1911.07532, 2019.

[38] Kipf, T. N., M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR). 2017.

[39] Veličković, P., G. Cucurull, A. Casanova, et al. Graph attention networks. In International
Conference on Learning Representations. 2018.

[40] Xu, K., W. Hu, J. Leskovec, et al. How powerful are graph neural networks? In International
Conference on Learning Representations. 2019.

[41] Morris, C., M. Ritzert, M. Fey, et al. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pages
4602–4609. 2019.

[42] Liao, R., Z. Zhao, R. Urtasun, et al. Lanczosnet: Multi-scale deep graph convolutional networks.
In International Conference on Learning Representations. 2019.

[43] Isufi, E., F. Gama, A. Ribeiro. Edgenets: edge varying graph neural networks. arXiv preprint
arXiv:2001.07620, 2020.

[44] Lu, Z., H. Pu, F. Wang, et al. The expressive power of neural networks: A view from the width.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, eds.,
Advances in Neural Information Processing Systems 30, pages 6231–6239. Curran Associates,
Inc., 2017.

[45] Murphy, R. L., B. Srinivasan, V. Rao, et al. Relational pooling for graph representations. arXiv
preprint arXiv:1903.02541, 2019.

[46] Dasoulas, G., L. D. Santos, K. Scaman, et al. Coloring graph neural networks for node
disambiguation. In Accepted to International Conference on Learning Representations. 2020.

[47] Bellemare, M. G., Y. Naddaf, J. Veness, et al. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[48] Huang, Z., F. Liu, H. Su. Mapping state space using landmarks for universal goal reaching. In
Advances in Neural Information Processing Systems, pages 1940–1950. 2019.

[49] Van Hasselt, H., A. Guez, D. Silver. Deep reinforcement learning with double q-learning. In
Thirtieth AAAI conference on artificial intelligence. 2016.

[50] Qi, C. R., H. Su, K. Mo, et al. Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 652–660. 2017.

[51] Neyshabur, B., S. Bhojanapalli, D. Mcallester, et al. Exploring generalization in deep learning.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, eds.,
Advances in Neural Information Processing Systems 30, pages 5947–5956. Curran Associates,
Inc., 2017.

[52] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[53] Girdhar, R., D. Ramanan. Attentional pooling for action recognition. In Advances in Neural
Information Processing Systems, pages 34–45. 2017.

[54] Vaswani, A., N. Shazeer, N. Parmar, et al. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008. 2017.

[55] Martins, A., R. Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In International Conference on Machine Learning, pages 1614–1623.
2016.

[56] Weisfeiler, B., A. A. Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

[57] Erdos, P., A. Renyi. On random graphs. Publ. Math. Debrecen, 6:290–297, 1959.
[58] Barber, C. B., D. P. Dobkin, H. Huhdanpaa. The quickhull algorithm for convex hulls. ACM

Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.
[59] Applegate, D. L., R. E. Bixby, V. Chvatal, et al. http://www.math.uwaterloo.ca/tsp/

concorde.html. Accessded: 2020-02-07.

12

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

[60] Xu, K., C. Li, Y. Tian, et al. Representation learning on graphs with jumping knowledge
networks. In International Conference on Machine Learning (ICML). 2018.

[61] Li, Y., D. Tarlow, M. Brockschmidt, et al. Gated graph sequence neural networks. In Interna-
tional Conference on Learning Representations. 2016.

[62] Lee, J., I. Lee, J. Kang. Self-attention graph pooling. In International Conference on Machine
Learning (ICML). 2019.

Appendices
A Organization of the Appendices

In the supplementary materials, we aim to answer the following questions: (1) How powerful is
our iterative module on approximating the iterative algorithms? (2) Are low generalization errors
achievable when using homogeneous neural networks to approximate the homogeneous functions?
What is the generation error bound? (3) Are low training errors achievable when using HomoMLP
to approximate the homogeneous functions? Is HomoMLP a universal approximator of positive
homogeneous functions? (4) Is the iterative module harmful to the standard generalizability in
practice? What is its performance on graph-classification benchmarks? (5) What are the experimental
setups? How are the models built?

To answer the question (1), we present the theoretical analysis of the representation power of our
iterative module in Section B.1. To answer the question (2), we prove the generalization error
bounds of homogeneous neural networks on approximating homogeneous functions with independent
scaling assumptions in Section B.2.1. A concrete bound based on the PAC-Bayesian framework
is also presented in Lemma B.2.1. To answer the question (3), we present and prove the universal
approximation theorem on approximating the homogeneous functions for both general HomoMLP
and width-bounded HomoMLP in Section B.2.3. To answer question (4), we show that our IterGIN
model, which wraps each layer of the state-of-art GIN [40] model with our iterative module, achieves
competitive performance to GIN, in Section E.3. To answer question (5), we describe all omitted
details of the experimental setups in Section D.

Moreover, we provide the index of contents following the same order as they appear in the main body
of the paper, as follows:

• Details of IterGNN, such as the memory-efficient implementation in Section C.1.3, the
theoretical analysis of representation powers in Section B.1, the node-wise iterative module
to support unconnected graphs in Section C.1.1, and the decaying confidence mechanism to
achieve much larger iteration numbers during inference in practice in Section C.1.2.

• Theoretical analysis of homogeneous neural networks, including the proof of Theorem 1
in Section B.2.1, the proof of Theorem 2 in Section B.2.3, the propositions stating that
HomoGNN and HomoMLP can only represent homogeneous functions in Section B.2.2.

• The formulation details of PathGNN layers in Section C.2.
• The generation processes and the properties of datasets in Section D.
• The details of models and baselines in Section D.4.
• The training details in Section D.5.
• The ACT algorithm usually learns small iteration numbers in Section E.1.2.
• The minimum depth of GNNs to accurately predict the shortest path of length l is l/2 in

Section E.1.2.
• The generalization performance of IterGNN, GCN, and PointNet on the symbolic Pac-

man task in environments with different number of dots and different number of walls in
Section E.2.

In general, we provide the theoretical analysis of our proposals in Section B. We describe the
detailed formulations of our proposals in Section C. The omitted experimental setups are all listed in
Section D and the omitted experimental results are presented in Section E. At last, we also state more
background knowledges of graph neural networks (GNNs) in Section F.

13

B Theoretical analysis

We present the theoretical analysis of our proposals in this section. Main results include

• The representation powers of our iterative module.

– Our iterative module is a universal approximator of the iterative algorithms, with oracles
to reproduce the body function and the condition function in the iterative algorithms.
(Theorem B.1.1)

– Under some more practical assumptions, we show that our iterative module can achieve
adaptive and unbounded iteration numbers depending on the graph sizes using GNNs.
(Proposition 1)

• Generation error bounds of homogeneous neural networks.

– We prove that the generation error bounds of homogeneous neural networks on ap-
proximating the homogeneous functions scale linearly with the expectation of the
scales/magnitudes under the independent scaling assumption. (Theorem 1)

– We provide a concrete generation error bounds for homogeneous neural networks
by integrating Theorem 1 and a specific generation error bounds with classical i.i.d.
assumptions in the PAC-Bayesian framework (Eq.7 in [51]). (Lemma B.2.1)

• The homogeneous properties of HomoMLP and of HomoGNN.

– We prove that HomoMLP and HomoGNN can only represent homogeneous functions.
(Proposition B.2.1 and Proposition B.2.2)

• The universal approximation theorems of homogeneous functions for HomoMLP.

– We prove that HomoMLP is a universal approximator of homogeneous functions.
(Theorem B.2.2)

– We prove that width-bounded HomoMLP is also a universal approximator of homoge-
neous functions. (Theorem 2 and Theorem B.2.4)

B.1 Representation powers of iterative module

We first state the intuition that our iterative module as described in the main body can approximate
any iterative algorithms as defined in Algorithm 2, as long as the body and condition functions are
available or can be perfectly reproduced by neural networks.

Algorithm 2: Iterative algorithm
input initial feature x
k ← 1
h0 ← x
while not condition(hk) do
hk ← body(hk−1)
k ← k + 1

end while
return h = hk

More formally, we build an ideal class of models, named as Iter-Oracle, by combining our iterative
module with the oraclesFθ that can perfectly reproduce the body function and the condition function,
which means there exist θ′ and θ′′ such that for all x,Fθ′(x) = body(x) andFθ′′(x) = condition(x).
We can then show the representation power of our iterative module using the following theorem:

Theorem B.1.1. For any iterative algorithm, iter-alg, defined as in Algorithm 2, for any initial
feature x, and for any ε > 0, there exist an Iter-Oracle model A, which represents the function FA,
satisfying

||iter-alg(x)−FA(x)|| < ε. (4)

14

We prove it by construction. We build the function f in our iterative module using Fθ′ such that
Fθ′(x) = body(x) for all x. The function g in our iterative module is built as sigmoid(α(Fθ′′(x)−
0.5)), where Fθ′′(x) = condition(x) for all x and we utilize similar rules to the python language
for type conversion, which means condition(x) outputs 1 if the condition is satisfied and outputs 0
otherwise. By setting α→ +∞, we have

ck →

{
1 if condition(hk)

0 if not condition(hk).

Therefore,
∑∞
j=1 c

jhj
∏j−1
i=1 (1 − ci) → hk, where k is the time step that condition(hk) is firstly

satisfied. More formally, assume Λ bounds the norm of features hj for the specific iterative algorithm
iter-alg, for the specific initial feature x, and for any j, we can set α as

α > 2 ln

(
(k + 1)Λ

ε
− 1

)
and α > −2 ln

(1 +
ε

(k + 1)Λ

)− 1
k

− 1

 , (5)

so that Eq. 4 is satisfied, since for j < k,∥∥∥∥∥∥cjhj
j−1∏
i=1

(1− ci)− 0

∥∥∥∥∥∥ <
∥∥∥cjhj∥∥∥ < 1

1 + e
α
2

Λ =
ε

k + 1
, (6)

for j = k, ∥∥∥∥∥∥ckhk
k−1∏
i=1

(1− ci)− hk
∥∥∥∥∥∥ <

((
1

1 + e−
α
2

)k
− 1

)
Λ =

ε

k + 1
, (7)

for j > k, ∥∥∥∥∥∥
∞∑

j=k+1

cjhj
j−1∏
i=1

(1− ci)− 0

∥∥∥∥∥∥ < (1− ck)Λ <
1

1 + e
α
2

Λ =
ε

k + 1
. (8)

Together, we have∥∥∥∥∥∥
∞∑
j=1

cjhj
j−1∏
i=1

(1− ci)− hk
∥∥∥∥∥∥ ≤

k−1∑
j=1

∥∥∥∥∥∥cjhj
j−1∏
i=1

(1− ci)− 0

∥∥∥∥∥∥+ (9)

∥∥∥∥∥∥ckhk
k−1∏
i=1

(1− ci)− hk
∥∥∥∥∥∥+ (10)

∥∥∥∥∥∥
∞∑

j=k+1

cjhj
j−1∏
i=1

(1− ci)− 0

∥∥∥∥∥∥ (11)

< (k + 1)
ε

k + 1
= ε

We then derive a more practical proposition of IterGNN, based on Theorem B.1.1, stating the intuition
that IterGNN can achieve adaptive and unbounded iteration numbers:
Proposition 1. Under the assumptions that IterGNN can calculate graph sizes N with no error and
the multilayer perceptron used by IterGNN is a universal approximator of continuous functions on
compact subsets of Rn (n ≥ 1) (i.e. the universal approximation theorem), there exist IterGNNs
whose iteration numbers are constant, linear, polynomial or exponential functions of the graph sizes.

The proofs are simple. Let g′ be the function that maps the graph sizes N to iteration numbers k. we
can then build GNNs as f to calculate the graph sizes N and the number of current time step j, and
build g as sigmoid(α(0.5− |g′(N)− j|)). The α can be set similarly to the previous proof except
for one scalar that compensates the approximation errors of neural networks. More formally, assume

15

ε′ bounds the error of predicting g′(N) and j using neural networks A, which means for any input,
there exists neural networks that represent functions Fg and Fj satisfying |g′(N) − Fg| < ε′ and
|j −Fj | < ε′. We can then set α as

α >
2

1− 4ε′
ln

(
(k + 1)Λ

ε
− 1

)
and α > − 2

1− 4ε′
ln

(1 +
ε

(k + 1)Λ

)− 1
k

− 1

 , (12)

so that Proposition 1 is satisfied. Note that it is easy to build GNNs to exactly calculate the graph
sizes N and the number of current time step j. Given the universal approximation theorem of MLP,
the stopping condition function g can also be easily approximated by MLPs. Our iterative module is
thus able to achieve adaptive and unbounded iteration numbers using neural networks.

B.2 Homogeneous prior

We formalize the generalization error bounds of homogeneous neural networks on approximating
homogeneous functions under proper conditions, by extending the example in the main body to
more general cases, in Section B.2.1. To make sure functions represented by neural networks are
homogeneous, we also prove that HomoGNN and HomoMLP can only represent homogeneous
functions, in Section B.2.2. To show that low training errors are achievable, we further analyze
the representation powers of HomoMLP and demonstrate that it is a universal approximator of
homogeneous functions under some assumptions, based on the universal approximation theorem for
width-bounded ReLU networks [44], in Section B.2.3.

B.2.1 Proof of Theorem 1: generalization error bounds of homogeneous neural networks

Extending the example in the main body to more general cases, we present the out-of-distribution gen-
eralization error bounds of homogeneous neural networks on approximating homogeneous functions
under the assumption of independent scaling of magnitudes during inference:

Let training samples Dm = {x1, x2, · · ·xm} be independently sampled from the distribution Dx,
then if we scale the training samples with the scaling factor λ ∈ R+ which is independently
sampled from the distribution Dλ, we get a “scaled” distribution Dλx , which has a density function
PDλx (z) :=

∫
λ

∫
x
δ(λx = z)PDλ(λ)PDx(x) dxdλ. The following theorem bounds the generalization

error bounds on Dλx :
Theorem 1. (Generalization error bounds of homogeneous neural networks with independent scaling
assumption). For any positive homogeneous functions function f and neural network FA, let β
bounds the generalization errors on the training distribution Dx , i.e., Ex∼Dx |f(x) − FA(x)| ≤
1
m

∑m
i=1 |f(xi)− FA(xi)|+ β, then the generalization errors on the scaled distributions Dλx scale

linearly with the expectation of scales EDλ [λ]:

Ex∼Dλx |f(x)− FA(x)| = EDλ [λ]Ex∼Dx |f(x)− FA(x)| ≤ EDλ [λ](
1

m

m∑
i=1

|f(xi)− FA(xi)|+ β) (13)

The proof is as simple as re-expressing the formulas:

Ez∼Dλx |f(z)− FA(z)| =

∫
λ

∫
x

PDλ(λ)PDx(x)|f(λx)− FA(λx)|dxdλ (14)

=

∫
λ

PDλ(λ)λ dλ

∫
x

PDx(x)|f(x)− FA(x)|dx (15)

= EDλ [λ]Ex∼Dx |f(x)− FA(x)| (16)

≤ EDλ [λ](
1

m

m∑
i=1

|f(xi)− FA(xi)|+ β)

Theorem 1 can be considered as a meta-bound and can thus be integrated with any specific general-
ization error bounds with classical i.i.d. assumptions to create a concrete generation error bounds of
homogeneous neural networks on approximating homogeneous functions with independent scaling

16

assumptions. For example, when integrated a generation error bounds in the PAC-Bayesian frame-
work (Eq.7 in [51]), we obtain the following lemma: Let fw be any predictor learned from training
data. We consider a distributionQ over predictors with weights of the form w + v, where w is a single
predictor learned from the training set, and v is a random variable.
Lemma B.2.1. Assume all hypothesis h and fw+v for any v are positive homogeneous functions, as
defined in Definition 1. Then, given a “prior” distribution P over the hypothesis that is independent
of the training data, with probability at least 1− δ over the draw of the training data, the expected
error of fw+v on the scaled distribution Dλx can be bounded as follows

Ev

[
Ex∼Dλx

[∣∣f(x)− fw+v(x)
∣∣]] ≤ EDλ [λ]

Ev

 1

m

m∑
i=1

∣∣f(xi)− fw+v(xi)
∣∣+ 4

√
1

m

(
KL(w + v||P) + ln

2m

δ

) .

B.2.2 HomoMLP and HomoGNN are homogeneous functions

We present that HomoGNN and HomoMLP can only represent homogeneous functions:
Proposition B.2.1. For any input x, we have HomoMLP(λx) = λHomoMLP(x) for all λ > 0.
Proposition B.2.2. For any graph G = (V,E) with node attributes ~xv and edge attributes ~xe, we
have for all λ > 0,

HomoGNN(G, {λ~xv : v ∈ V }, {λ~xe : e ∈ E}) = λHomoGNN(G, {~xv : v ∈ V }, {~xe : e ∈ E}). (17)

Both propositions are derived from the following lemma:
Lemma B.2.2. Compositions of homogeneous functions are homogeneous functions.

We compose functions by taking the outputs of functions as the input of other functions. The inputs
of functions are either the outputs of other functions or the initial features x. For example, we can
compose functions f, g, h as h(f(x), g(x), x). If f, g, h are all homogeneous functions, we have for
all x and all λ > 0,

h(f(λx), g(λx), λx) = λh(f(x), g(x), x). (18)

More formally, we can prove the lemma by induction. We denote the composition of a set of
functions {f1, f2, · · · , fn} as O({f1, f2, · · · , fn}). Note that there are multiple ways to compose
n functions. Here, O({f1, f2, · · · , fn}) just denotes one specific way of composition, and we can
use O′({f1, f2, · · · , fn}) to denote another. We want to prove that the composition of homogeneous
functions is still a homogeneous function, which means for all n > 0, for all λ > 0, and for all
possible ways of compositions O, O({f1, f2, · · · , fn})(λx) = λO({f1, f2, · · · , fn})(x).

The base case: n = 1. The composition of a single function O({f1}) is itself f1. Therefore, O({f1})
is homogeneous by definition as O({f1})(λx) = f1(λx) = λO({f1})(x).

Assume the composition of the k functions is homogeneous, for any com-
position of k + 1 functions O({f1, f2, · · · , fk+1}), let fk+1 be the last
function of the compositions, which means O({f1, f2, · · · , fk+1})(x) :=
fk+1(O′({f1, f2, · · · , fk})(x), O′′({f1, f2, · · · , fk})(x), O′′′({f1, f2, · · · , fk})(x), · · ·), it’s
easy to see that, according to the definition of homogeneous functions,

O({f1, f2, · · · , fk+1})(λx) = λO({f1, f2, · · · , fk+1})(x).

Therefore, we prove the Lemma B.2.2. Proposition B.2.1 and Proposition B.2.1 can all be considered
as specializations of this lemma.

B.2.3 Proof of Theorem 2: representation powers of HomoMLP

We first introduce a class of neural networks (defined in Eq.19) that can be proved as a universal
approximator of homogeneous functions (Theorem B.2.1) and then show that our HomoMLP is as
powerful as this class of neural networks to prove that our HomoMLP is a universal approximator

17

of homogeneous functions (Theorem B.2.2). Furthermore, we prove the universal approximation
theorem for width-bounded HomoMLP (Theorem 2). At last, we notice that the assumption in
Theorem 2 (i.e. “for all homogeneous and Lebesgue-integrable functions: f : Rn → R”) is too
strong. Most common homogeneous functions are not Lebesgue-integrable functions on Rn (e.g.
f(x) = ||x|| is a not Lebesgue-integrable function as its integration on Rn is infinite.). We therefore
prove another universal approximation theorem for width-bounded HomoMLP with assumptions that
are more reasonable both theoretically and practically (Theorem B.2.4).

We construct a class of neural networks as the universal approximator of positive homogeneous
functions, as defined in the main body, as follows:

GMLP(x) = |x|FMLP(
x

|x|
), (19)

where | · | denotes the L1 norm, the MLP denotes the classical multilayer perceptrons with positive
homogeneous activation functions and FMLP is the function represented by the specific MLP.
Proposition B.2.3. For any input x, we have GMLP(λx) = λGMLP(x).

This proposition can be easily proved by re-expressing the formulas:

GMLP(λx) = |λx|FMLP(
λx

|λx|
) = λ|x|FMLP(

x

|x|
) = λGMLP(x)

We show that it is a universal approximator of homogeneous functions: Let X be a compact subset of
Rm and C(X) denotes the space of real-valued continuous functions on X.
Theorem B.2.1. (Univeral approximation theorem for GMLP.) Given any ε > 0 and any function
f ∈ C(X), there exist a finite-layer feed-forward neural networks A with positive homogeneous

activation functions such that for all x ∈ X, we have |GA(x)− f(x)| =
∣∣∣∣|x| FA (x

|x|

)
− f (x)

∣∣∣∣ < ε.

The prove is as simple as applying the universal approximation theorem of MLPs [52] and applying
the definition of the homogeneous functions. In detail, as X is a compact subset, the magnitudes of
inputs x is bounded. We use M denote the bound, which means |x| ≤M for all x ∈ X. According
to the universal approximation theorem of MLPs [52], there exists a finite-layer feed-forward layer

A with ReLU as activation functions such that
∣∣∣∣FA (x

|x|

)
− f

(
x
|x|

)∣∣∣∣ < ε
M for all x ∈ X. Then,

according to definition of homogeneous functions, we have

|GA(x)− f(x)| =

∣∣∣∣∣|x| FA
(
x

|x|

)
− |x| f

(
x

|x|

)∣∣∣∣∣ < |x| εM < ε (20)

Note that ReLU is positive homogeneous. Therefore, we finish the proof of Theorem B.2.1.

We then prove that HomoMLP is a universal approximator of homogeneous functions: Let X be a
compact subset of Rm and C(X) denotes the space of real-valued continuous functions on X.
Theorem B.2.2. (Universal approximation theorem for HomoMLP.) Given any ε > 0 and any
function f ∈ C(X), there exist a finite-layer HomoMLP A′, which represents the function FA′ , such
that for all x ∈ X, we have |FA′(x)− f(x)| < ε.

We prove it based on Theorem B.2.1 by construction. In detail, according to Theorem B.2.1, there

exists a finite-layer MLP A such that for all x ∈ X, |GA(x)− f(x)| =
∣∣∣∣|x| FA (x

|x|

)
− f (x)

∣∣∣∣ < ε.

Without loss of generality, we assume A as a two-layer ReLU feed-forward neural networks, which
means FA(x) = W 2ReLU(W 1x+ b1) + b2, where W 1 ∈ Rn×m,W 2 ∈ R1×n are weight matrices
and b1 ∈ Rn, b2 ∈ R are biases. The function GA can then be expressed as

GA(x) = |x|

(
W 2ReLU

(
W 1 x

|x|
+ b1

)
+ b2

)
= W 2ReLU

(
W 1x+ b1|x|

)
+ b2|x|. (21)

Therefore, we just need to prove that the L1 norm | · | can be exactly calculated by HomoMLP to
show that HomoMLP is a universal approximator homogeneous functions. Typically, we construct a

18

two-layer HomoMLP as follows

1TReLU

([
I
−I

]
x

)
≡ |x|, for all x ∈ Rm, (22)

where 1 is a vertical vector containing 2m elements whose values are all one, and I denotes the
identity matrix of size m × m. Together with Eq. 21, we show that GA(x) is a specification of
HomoMLP, denoted as A′, as follows:

GA(x) = W 2ReLU
(
W 1x+ b1|x|

)
+ b2|x| (23)

= W 2ReLU

W 1x+ b11TReLU

([
I
−I

]
x

)+ b21TReLU

([
I
−I

]
x

)
(24)

=
[
W 2 b2

]
ReLU

[W 1 + b1 −W 1 + b1

1T 1T
]

ReLU

([
I
−I

]
x

) (25)

= FA′(x) (26)

Here, we use 1 to denote a vertical vector containing m elements whose values are all one, and I
still denotes the identity matrix of size m×m. The summation of the weight matrix W ∈ Rn×m
and the bias b ∈ Rn outputs a new weight matrix Wb such that Wb[i, j] = W [i, j] + b[i] for all
i = 1, 2, · · · , n and j = 1, 2, · · · ,m, where W [i, j] is the element in the ith row and the jth column
of matrix W and b[i] is the ith element of vertex b. Consequently, we build a three-layer HomoMLP
A′ with ReLU as activation functions such that for all x ∈ X,

|FA′(x)− f(x)| = |GA(x)− f(x)| < ε.

Applying similar techniques to previous proofs, we can further derive the universal approximation
theorem for width-bounded MLP. We first prove Theorem 2, which is presented in the main body,
and show that it contains a too strong assumption. To amend this, we introduce two more theorems
also stating that width-bounded HomoMLP is a universal approximator of positive homogeneous
functions under proper conditions.
Theorem 2. (Universal approximation theorem for width-bounded HomoMLP). For any positive-
homogeneous Lebesgue-integrable function f : Rn 7→ R and any ε > 0, there exists a finite-layer
HomoMLP A with width dm ≤ 2(n + 4), such that the function FA represented by this networks
satisfies

∫
Rn |f(x)− FA(x)|dx < ε.

We notice that the assumption in Theorem 2 is too strong, because for any positive-homogeneous
Lebesgue-integral function f : Rn 7→ R, it must satisfy that

∫
Rn |f(x)|dx = 0. We prove it by

contradiction. Assume there exists a positive-homogeneous Lebesgue-integrable function f : Rn 7→
R such that

∫
Rn |f(x)|dx > 0, which means there must exist a bounded subset E ∈ Rn such that∫

E |f(x)|dx > 0. Then, according to the definition of homogeneous functions, we can calculate the
integration on the scaled subset Eλ := {λx : x ∈ E} as

∫
Eλ |f(x)|dx = λ

∫
E |f(x)|dx. By setting

λ = ∞, we have
∫
Rn |f(x)|dx ≥

∫
Eλ |f(x)| = ∞, which contradicts the assumption that f is a

Lebesgue-integrable function.

According to this observation, the proof of Theorem 2 is as simple as setting the weight matrices of
HomoMLP as zero, so that

∫
Rn |f(x)− FA(x)|dx =

∫
Rn |f(x)|dx = 0 < ε.

We then change the assumption from “for any positive-homogeneous Lebesgue-integral function
f : Rn 7→ R” to “for any positive-homogeneous Lebesgue-integral function f : X 7→ R, where X is
a Lebesgue-measurable and compact subset of Rn”, so that most popular homogeneous functions
are taken into account in our Theorems. Note that this assumption is also reasonable in practice
since numbers stored in our computers are also bounded within a measurable compact big cube
[−M,M]n, where M is the biggest number that can be stored in computers. Theorem B.2.3 and
Theorem B.2.4 are proved to show that width-bounded GMLP and width-bounded HomoMLP are
universal approximators of homogeneous functions with the amended assumption.
Theorem B.2.3. (Universal approximation theorem for width-bounded GMLP). For any positive-
homogeneous Lebesgue-integrable function f : X 7→ R, where X is a Lebesgue-measurable compact

19

subset of Rn, and for any ε > 0, there exists a finite-layer feed-forward neural networks A with
positive homogeneous activation functions and with width dm ≤ n+ 4, such that∫

X
|f(x)−GA(x)|dx :=

∫
X

∣∣∣∣∣|x| FA
(
x

|x|

)
− f(x)

∣∣∣∣∣dx < ε. (27)

The proof is very similar to the proof of Theorem B.2.1. In detail, as X is a compact subset, the
magnitudes of inputs x is bounded. We use M denote the bound, which means |x| ≤ M for all
x ∈ X. According to the universal approximation theorem of width-bounded MLPs [44], there exists
a finite-layer feed-forward layer A with ReLU as activation functions and with width dm < n+ 4,
such that ∫

X

∣∣∣∣∣FA
(
x

|x|

)
− f

(
x

|x|

)∣∣∣∣∣dx < ε

M
. (28)

Then, according to the definition of homogeneous functions, we have∫
X
|f(x)−GA(x)|dx =

∫
X

∣∣∣∣∣|x| FA
(
x

|x|

)
− |x| f

(
x

|x|

)∣∣∣∣∣ dx < M
ε

M
= ε. (29)

Note that ReLU is positive homogeneous. Therefore, we finish the proof of Theorem B.2.3.
Theorem B.2.4. (Universal approximation theorem for width-bounded HomoMLP with reasonable
assumption). For any positive-homogeneous Lebesgue-integrable function f : X 7→ R, where X is a
Lebesgue-measurable compact subset of Rn, and for any ε > 0, there exists a finite-layer HomoMLP
A′ with width dm ≤ 2(n+4), which represents the function FA′ such that

∫
X |f(x)−FA′(x)|dx < ε.

The proof is very similar to the proof of Theorem B.2.2. In detail, according to Theorem B.2.3, there
exists a finite-layer MLP A such that,∫

X
|f(x)−GA(x)|dx =

∫
X

∣∣∣∣∣|x| FA
(
x

|x|

)
− f(x)

∣∣∣∣∣dx < ε. (30)

Assume the MLP A is formulated as

FA(x) = WKReLU

(
WK−1ReLU

(
· · ·ReLU

(
W 1x+ b1

)
· · ·
)

+ bK−1

)
+ bK , (31)

where K is the layer number, W 1,W 2, · · · ,WK are weight matrices, and b1, b2, · · · , bK are biases.
We can then re-express GA(x), using the definition in Eq. 19, as follows

GA(x) = WKReLU

(
WK−1ReLU

(
· · ·ReLU

(
W 1x+ b1|x|

)
+ · · ·

)
+ bK−1|x|

)
+ bK |x|. (32)

Together with Eq. 22, we show that GA(x) is a specification of HomoMLP, denoted asA′, as follows:

GA(x) = WKReLU

(
WK−1ReLU

(
· · ·ReLU

(
W 1x+ b1|x|

)
+ · · ·

)
+ bK−1|x|

)
+ bK |x|

=
[
WK bK

]
ReLU(

[
WK−1 bK−1

0T 1T

]
ReLU(· · ·

[
W 2 b2

0T 1T
]

ReLU([
W 1 + b1 −W 1 + b1

1T 1T
]

ReLU(

[
I
−I

]
x)) · · ·))

= FA′(x).

Here, we also use 1 to denote vectors full of ones, 0 to denote vectors full of zeros, and I to denote
the identity matrix of size m×m. The summation of the weight matrix W ∈ Rn×m and the bias
b ∈ Rn outputs a new weight matrix Wb such that Wb[i, j] = W [i, j] + b[i] for all i = 1, 2, · · · , n
and j = 1, 2, · · · ,m, where W [i, j] is the element in the ith row and the jth column of matrix W
and b[i] is the ith element of vertex b. Consequently, we build a (K + 1)-layer HomoMLP A′ with
ReLU as activation functions and with width dm ≤ max(2n, n+ 5) such that,∫

X
|f(x)− FA′(x)|dx =

∫
X
|f(x)−GA(x)|dx < ε.

20

C Method

We present more details about our iterative module in Section C.1, such as the memory-efficient
implementation in Section C.1.3, the node-wise iterative module to support unconnected graphs in
Section C.1.1, and the decaying confidence mechanism to achieve much larger iteration numbers
during inference in practice in Section C.1.2. We describe how to formulate homogeneous neural
network modules in Section C.3. We show the formulation of PathGNN layers in detail in Section C.2.
There are three variants of PathGNN, each of which corresponds to different degrees of flexibilities
of approximating functions. At last, we present the random initialization technique for solving the
component counting problem using GNNs and discuss its motivations in Section C.4.

C.1 Iterative module

We propose IterGNN to break the limitation of fixed-depth graph neural networks so that models can
generalize to graphs of arbitrary scales. The core of IterGNN is a differentiable iterative module as
described in the main body. We present more details about its formulations and implementations in
this subsection. Its representation powers are analyzed in Section B.1.

C.1.1 Node-wise iterative module

In the main body, we assume all nodes within the same graph share the same scale, so that we predict a
single confidence score for the whole graph at each time step while building IterGNNs. However, for
problems like connected component counting, the graphs can have multiple components of different
scales. We can then utilize node-wise IterGNNs to achieve better performance. It is equivalent to
apply our iteration module as described in the main body to each node (instead of to each graph).
The models can thus learn to iterate for different times for nodes/components of different scales.

In detail, we also set the iteration body function f and the stopping criterion function g as GNNs.
The body function f still update the node features iteratively {~h(k+1)

v : v ∈ V } = GNN(G, {~h(k)v :

v ∈ V }, {~he : e ∈ E}). On the other hand, We build the termination probability module g by
node-wise embedding modules and node-wise prediction modules. Typically, we apply the same
MLP to features of each node to predict the confidence score of each node ckv = sigmoid(MLP(~h

(k)
v))

at time step k. We similarly take the expectation of node features as the output, however with different
distributions for different nodes: ~hv =

∑∞
k=1 c

k
v

∏k−1
i=1 (1− civ)~hkv .

C.1.2 Decaying confidence mechanism

Although the vanilla IterGNN, as described in the main body, theoretically supports infinite iteration
numbers, models can hardly generalize to much larger iteration numbers during inference in practice.
In detail, we utilize the sigmoid function to ensure that confidence scores are between 0 and 1.
However, the sigmoid function can’t predict zero confidence scores to continue iterations forever.
Alternatively, the models will predict small confidence scores when they are not confident enough
to terminate at the current time step. As a result, the models will still work well given the IID
assumption, but can’t generalize well when much larger iteration numbers are needed than those met
during training. For example, while solving the shortest path problem, 0.05 is a sufficiently small
confidence score during training, because no iteration number larger than 30 is necessary and 0.9530

is still quite larger than 0. However, such models can not generalize to graphs with node numbers
larger than 300, since 0.95300 → 0 and the models will terminate before time step 300 in any case.
During our preliminary experiments, the vanilla IterGNN can not iterate for more than 100 times.

The key challenge is the difference between iteration numbers during training and inference. We
then introduce a simple decaying mechanism to achieve larger iteration numbers during inference.
The improved algorithm is shown in Algorithm 3. The termination probabilities will manually
decay/decrease by λ at each time step. The final formulation of IterGNN can then generalize to iterate
for 2500 times during inference in our experiments.

We compare the choices of decaying ratios as 0.99, 0.999, 0.9999 in our preliminary experiments and
fix it to 0.9999 afterwards in all experiments.

21

Algorithm 3: IterGNN with decay. g is the stopping criterion and f is the iteration body
Input: initial feature x; stop threshold ε; decay constant λ;
k ← 1
h0 ← x
while λk

∏k−1
i=1 (1− ci) > ε do

hk ← f(hk−1)
ck ← g(hk)
k ← k + 1

end while
return h = λk

∑k
j=1 c

jhj
∏j−1
i=1 (1− ci)

C.1.3 Efficient train and inference by IterGNNs

The advantages of IterGNN are not only limited to improving the generalizability w.r.t. scales.
For example, IterGNN also promotes the standard generalizability because of its better algorithm
alignment [26] to iterative algorithms. In this subsection, we show that IterGNN moreover improves
efficiencies for both training and inference. Briefly speaking, the improved generalizability w.r.t.
scales enables training on smaller graphs while still achieving satisfied performance on larger graphs.
The cost of computations and the cost of memories are therefore decreased on those smaller graphs
during training. During inference, we implement a memory-efficient algorithm by expressing the
same logic with different formulas.

In detail, training GNNs take memories whose sizes scale at least linearly (in general quadratically)
with respect to the graph sizes. In our preliminary experiments, 11GB GPU memories are not enough
to train 30-layer GNNs on graphs of node numbers larger than 100 when the batch size is 32. It is
therefore either infeasible or super-inefficient to train 500-layer GNNs directly on graphs with 1000
nodes, to meet the IID assumptions. We couldn’t even fit such models within 32GB CPU memories
for training. On the other hand, with the help of IterGNN, fewer iterations and smaller graphs are
needed for training to achieve satisfying performance on larger graphs.

During inference, thanks to the equivalent formulations of IterGNNs as depicted in Algorithm 4, we
don’t need to store the node features at all times steps until the final output of our iterative module, as
done in Algorithm 3. In practice, we can calculate the final output step by step as follows

Algorithm 4: IterGNN’s efficient inference
Input: initial feature x; stop threshold ε; decay constant λ;
k ← 1; h0 ← x; c̄← 1; h̃← ~0;
while c̄ > ε do
hk ← f(hk−1); ck ← g(hk);

h̃← λh̃+ c̄ckhk

c̄← λ(1− ck)c̄;
k ← k + 1

end while
return h = h̃

Note that this memory-efficient algorithm is only applicable during inference, since the node features
at each time step must be stored during training to calculate the gradients during backward passes.

C.2 Path Graph Neural Networks

As stated in [15], the performance of GNNs, especially their generalizability and zero-shot trans-
ferability, is largely influenced by the relational inductive biases. Xu [26] further formalized the
relational inductive biases as sample efficiencies from algorithm alignments. For solving path-related
graph problems such as shortest path, a classical algorithm is the Bellman-Fold algorithm. Therefore,
to achieve more effective and generalizable solvers for path-related graph problems, we design several

22

Algorithm 5: The Bellman-Fold algorithm
Input: node attributes V = {vi, i = 1, 2, · · · , Nv}, edge attributes
E = {(wk, sk, rk), k = 1, 2, · · · , Ne}, and the source node source.
Output: The shortest path length from the source node to others,
distance = {disti, i = 1, 2, · · · , Nv}.

Initialize the intermediate node attributes V ′ = {disti, i = 1, 2, · · · , Nv} as

disti =

{
0 if. i = source

∞ o.w.
.

for i=1 to Nv − 1 do
for (wk, sk, rk) in E do

e′k = distsk + wk / edge message module
end for
for j=1 to Nv do

ēj = min({e′k : rk = j}) / aggregation module
distj = min(distj , ēj) / update module

end for
end for

specializations of GN blocks, as described in [15] and in Section F.1, by exploiting the inductive
biases of the Bellman-Fold algorithms. The notations are also presented in Section F.1.

Our first observation of the Bellman-Fold algorithm is that it directly utilizes the input attributes such
as the edge weights and the source/target node identifications at each iteration. We further observe
that the input graph attributes of classical graph-related problems are all informative, well defined
and also well represented as discrete one-hot encodings or simple real numbers (e.g. edge weights).
Therefore, we directly concatenate the input node attributes with the hidden node attributes as the
new node attributes before fed into our Graph Networks (GN) blocks. The models then don’t need to
extract and later embed the input graph attributes into the hidden representations in each GN block.

Our second observation is that Bellman-Fold algorithm can be perfectly represented by Graph
Networks as stated in Algorithm 5. Typically, for each iteration of the Bellman-Fold algorithm,
the message module sums up the sender node’s attributes (i.e. distance) with the edge weights,
the node-level aggregation module then selects the minimum of all edge messages, and finally the
attributes of the central node are updated if the new message (/distance) is smaller. The other modules
of GN blocks are either identity functions or irrelevant. Therefore, to imitate the Bellman-Fold
algorithm by GN blocks, we utilize max pooling for both aggregation and update modules to imitate
the min poolings in the Bellman-Fold algorithm. The edge message module is MLP, similarly to
most GNN variants. The resulting module is then equal to replacing the MPNN [14]’s aggregation
and update module with max poolings. Therefore, we call it MPNN-Max as in [24]. The concrete
formulas are as follows

e′k = MLP (vsk , vrk , ek)

ēj = max({e′k : rk = j})
v′j = max(vj , ēj)

Moreover, we notice that the Bellman-Ford algorithm is only designed for solving the shortest path
problem. Many path-related graph problems can not be solved by it. Therefore, we further relax the
max pooling to attentional poolings to increase the models’ flexibility while still maintaining the
ability to approximate min pooling in a sample efficient way. Typically, we propose the PathGNN
by replacing the aggregation module with attentional pooling. The detailed algorithm is stated in
Algorithm 6, where the global attributes are omitted due to their irrelevance.

Another variant of PathGNN is also designed by exploiting a less significant inductive bias of the
Bellman-Fold algorithm. Specifically, we observe that only the sender node’s attributes and the
edge attributes are useful in the message module while approximating the Bellman-Fold algorithm.
Therefore, we only feed those attributes into the message module of our new PathGNN variant,
PathGNN-sim. The detailed algorithm is stated in Algorithm 8.

23

Algorithm 6: One step of PathGNN
Input: graph G = (V,E)
Output: updated graph G′ = (V ′, E)

for (wk, sk, rk) in E do
ẽk = MLP (vsk , vrk , ek)
scorek = MLP ′(vsk , vrk , ek)
e′k = (scorek, ẽk) / edge message module

end for
for j=1 to Nv do

ēj = attention({e′k : rk = j}) / aggregation module
v′j = max(vj , ēj) / update module

end for

Algorithm 7: Attention Pooling in GNNs
Input: set of messages {e′k = (scorek, ẽk)}
Output: aggregated messages ēj

α = softmax(score)
ēj =

∑
k αk ẽk

In summary, we introduce Path Graph Neural Networks (PathGNN) to improve the generalizability
of GNNs for distance related problems by improving the algorithm alignment [26]. It is a specially
designed GNN layer that imitates one iteration of the classical Bellman-Ford algorithm. There
are three variants of PathGNN, i.e. MPNN-Max, PathGNN, and PathGNN-sim, each of which
corresponds to different degrees of flexibilities. In our experiments, they perform much better than
GCN and GAT for all path-related tasks regarding the generalizability, as stated in Section 5 in the
main body.

C.3 Homogeneous prior

As described in the main body, the approach to build HomoGNN is simple: remove all the bias
terms in the multi-layer perceptron (MLP) used by ordinary GNNs, so that all affine transformations
degenerate to linear transformations. Additionally, only activation functions that are homogeneous
are allowed to be used. Applying this approach to GN-blocks, we have the homogeneous GN blocks.
The HomoMLP is defined as MLPs without biases and with homogeneous functions as the activation
functions. Note that ReLU and Leaky ReLU are both homogeneous functions. The sum/max/mean
poolings are also homogeneous functions.

Algorithm 8: One step of PathGNN-sim
Input: graph G = (V,E)
Output: updated graph G′ = (V ′, E)

for (wk, sk, rk) in E do
ẽk = MLP (vsk , ek)
scorek = MLP ′(vsk , vrk , ek)
e′k = (scorek, ẽk) / edge message module

end for
for j=1 to Nv do

ēj = attention({e′k : rk = j}) / aggregation module
v′j = max(vj , ēj) / update module

end for

24

The only non-homogeneous pooling module that is widely used in GNNs is the attentional pooling
module [53, 54]. We also utilizes it as a flexible aggregation module in PathGNN as described in
Section C.2. In this subsection, we present another simple approach, which is generally similar to
the previous one, to design the homogeneous attentional poolings: replace MLPs with HomoMLPs
and apply one normalization layer before softmax. In detail, most attentional poolings have similar
architecture to the one in PathGNNs as presented in Algorithm 7. The attentional pooling modules
output the weighted summation of updated features ẽk, where the weights αk are probabilities
calculated by softmax based on the scores scorek. The updates features ẽk and scores scorek are
both calculated by applying some MLPs on the input features, as shown in Algorithm6. We want to
design attentional poolings that are homogeneous functions over the input features. The approach is
as follows: We change all MLPs to HomoMLPs and replace softmax with a scale-invariant version of
softmax. In this case, the weights αk will not change with respect to the scales of input features. The
magnitudes of the final output of attentional pooling modules ē, which is the weighted summation of
updated features ẽk, will then scale linearly with respect to the magnitudes of updates features as well
as the magnitudes of input features. Therefore, the resulting attentional module is a homogeneous
function. To design a scale-invariant softmax, we simply adopt one normalization layer before
softmax so that the effect of scales is eliminated. Typically, we build our scale-invariant softmax as

scale-invariant-softmax(score) = softmax
(

score

max score−min score

)
(33)

No division will be performed if max score = min score. Together with the bias-invariance property
of softmax (Proposition 2 in [55]), we have for all λ > 0,

scale-invariant-softmax(λ · score) = scale-invariant-softmax(score) (34)

Similar intuitions can be applied to design attentional poolings with activation functions other than
softmax, such as sparsemax [55].

C.4 Random Initialization

As analyzed in previous works [40, 41], standard GNNs are at most as powerful as the Weisfeiler-
Leman test (WL-test) [56] for distinguishing non-isomorphic graphs. Standard GNNs are then
theoretically short of representation powers for solving graph problems such as component counting
and graph radius/diameters, as illustrated in Figure 5. WL-test can’t distinguish the graph as one
circle with 6 nodes and the graph as two circles each with 3 nodes.

However, previous works all assumed that the node attributes were initialized as constant while
analyzing GNNs’ representation powers. With the constant initialization, nodes with the same subtree
patterns are not distinguishable similarly to the WL-test as shown in Figure 5. Nevertheless, they
didn’t fully utilize the representation powers of neural networks. Instead of utilizing the constant
initialization techniques, the node attributes could be initialized as random numbers so that each node
has its own unique identification. Subtrees that are of the same pattern but are composed with different
nodes are therefore distinguishable. In this case, each graph structure E is mapped into a set of input
graphs Grandom = {Vrandom, E} where Vrandom = {vi = rand(), i = 1, 2, · · · , Nv}. And the
graph-isomorphic problem is then formulated as distinguishing sets of graphs. As illustrated in Figure
5, and also as verified in Section E.4, GNNs with random initialization can distinguish non-isomorphic
regular graphs which are unable to be distinguished by WL-test. Therefore, random initialization
can improve the representation powers of GNNs. [45, 46] also formulated the improvement of
representation powers by random initialization while from another perspective, specifically towards
efficient universal approximators of permutation invariant/equivalent functions.

D Experiment Setups

We present the detailed experimental setups in this subsection. We first present details of three graph
theory problems, i.e. the shortest path problem in Section D.1.2, the component counting problem in
Section D.1.3, and the traveler salesman problem in Section D.1.4. We then list the experimental
setups of three graph-based reasoning tasks, i.e. the physical simulation in Section D.2.1, the image-
based navigation in Section D.2.2, and the symbolic Pacman in Section D.2.3. We also describe the
experimental setups of graph classification in Section D.3. The descriptions of models are stated in
Section D.4 and the training details are presented in Section D.5.

25

WL-subtree WL-subtree

(a) Classical GNNs / WL-test can’t distinguish
two circles and one circle

WL-subtree WL-subtree

(b) Classical GNNs / WL-test can’t distinguish
regular graphs with same degrees

(c) GNNs with unique node identifications (such as random initialization)
can distinguish regular graphs with same degrees

y=0

y=1

(d) Datasets visualization for distinguishing regular graphs by GNNs.
Each isomorphic graph corresponds to a set of graphs with random
node attributes and the problem reduce to graph classification problems.

Figure 5: Random initialization improves the representation power of GNNs by distinguishing
different nodes. (a) and (b) illustrate that classical GNNs which are as powerful as WL-test for graph
isomorphic problems can not distinguish regular graphs with same degrees. Typically, (a) shows an
example of two graphs with different component numbers and (b) shows an example of two graphs
with different diameters. Therefore, classical GNNs with constant initialization are not powerful
enough to solve many graph-related problems such as component counting and graph diameters. (c)
illustrates that GNNs with random initialization can distinguish regular graphs since each node is
assigned with a unique identification. (d) further demonstrates the details about datasets for training
and evaluating GNNs with random initialization. Specifically, GNNs can map each isomorphic graph
into a set of vectors in the graph-level embedding space and then the graph-isomorphic problem
reduces to the classical classification problem.

D.1 Graph theory problems

We evaluate our proposals on three classical graph theory problems, i.e. shortest path, component
counting, and the Traveling Salesman Problem (TSP). We present the properties of graph generators in
Section D.1.1, the setups for the shortest path problem in Section D.1.2, the setups for the component
counting in Section D.1.3, and the setups for the TSP problem in Section D.1.4.

D.1.1 Properties of Graph Generators

How to sample graphs turns to be intricate in our exploration to deeply investigate the generalizability
power. Four generators are adopted in our experiments:

• The Erdos-Renyi model [57], G(n, p), generates graphs with n nodes and each pair of nodes
is connected with probability p.

• The KNN model, KNN(n, d, k), first generates n nodes whose positions are uniformly
sampled from a d-dimensional unit cube. The nodes are then connected to their k nearest
neighbors. The edge directions are from the center node to its neighborhoods.

• The planar model, PL(n, d), first generates n nodes whose positions are uniformly sampled
from a d-dimensional unit cube. Delaunary triangulations are then computed [58] and nodes
in the same triangulation are connected to each other.

• The lobster model, Lob(n, p1, p2), first generates a line with n nodes. n1 ∼ B(n, p1) nodes
are then generated as first-level leaf nodes, where B denotes the binomial distribution. Each
leaf node uniformly selects one node in the line as the parent. Afterwards, n2 ∼ B(n1, p2)
are generated as second-level leaf nodes. Each second-level leaf node also uniformly selects
one first-level leaf node as the parent. The parents and children are connected to each other
and the graph is therefore undirected.

26

(a) Erdős–Rényi model (b) Planar graph (dim=2) (c) KNN graph (dim=1, k=8) (d) Lobster graph (p1=p2=0.2)

Figure 6: Properties of different random graph generators. The upper row illustrates graph samples
generated by the corresponding generator. The lower row demonstrates the relationships between the
graph sizes (i.e. node numbers) and the distributions of random node pairs’ distances. Typically, for
each generator and each graph size, 1000 sample graphs are generated by the corresponding generator
for estimating the distributions. Box plots are utilized for visualizing the distributions.

For the Erdos-Renyi model, we assign p equal to 0.5 so that all graphs of n nodes can be generated
with equal probabilities. However, the expectation of graph diameters decreases dramatically as
graph sizes increase for such model. As illustrated in Figure 6, the graph diameters are just 2 with
high probability when the node number is larger than 50.

The other three graph generators are therefore designed to generate graphs with larger diameters for
better evaluation of models’ generalizabilities w.r.t. scales. We manually select their hyper-parameters
to efficiently generate graphs of diameters as large as possible. Specifically, we set d = 1 and k = 8
for the KNN model, d = 2 for the planar model, p1 = 0.2 and p2 = 0.2 for the lobster model. Their
properties are illustrated in Figure 6. Note that the distances are positively related to the graph sizes
for all three graph generators. Moreover, for the lobster model, the distances increase almost linearly
with respect to the graph sizes.

D.1.2 Shortest Path

In this problem, given a source node and a target node, the model needs to predict the length of the
shortest path between them. The edge weights are positive and uniformly sampled. We consider
both unweighted graphs and weighted graphs (edge weights uniformly sampled between 0.5 and 1.5).
Groundtruth is calculated by Dijkstra’s algorithm.

We utilize a three-dimensional one-hot representation to encode the location of the source and target
nodes (100 for source, 010 for destination, and 001 for other nodes). Edge weights are encoded as
the edge attributes. Two metrics are used to measure the performance of GNNs. The relative loss is
first applied to measure the performance of predicting shortest path lengths. To further examine the
models’ ability in tracing the shortest path, we implement a simple post-processing method leveraging
the noisy approximation of path lengths (described later). We define the relative loss as |l − lpred|/l
and the success rate of identifying the shortest path after post-processing as 1(l = lpost-pred), where
l is the true shortest path length, lpred is the predicted length by GNNs, and lpost-pred is the length of
the predicted path after post-processing.

Post-Processing After training, our model can predict the shortest path length from source to target
nodes. The post-processing method is then applied to find the shortest path based on the learned
models. Specifically, the post-processing method predicts the shortest path

p = [p1, p2, · · · , pn] = post-processing(G;GNN)

given the input graph G = (Vi,j , E), as defined in Section 5.1.1., and the noisy shortest path length
predicting model GNN , where i, j are the indexes of source and target nodes, Vi,j is the node
attributes with one-hot encodings, and pk denotes the index of the kth node on the shortest path.

The post-processing algorithm is stated in Algorithm.9. Concretely, we first denote the shortest
path length between any two nodes i′ and j′ predicted by the trained model GNN as disti′,j′ =

27

Algorithm 9: Post-processing to predict the shortest path
Input: graph G = (Vi,j , E); source node index i; target node index j; trained models GNN that
predict the shortest path length from nodes i′ to node j′ as disti′,j′ = GNN((Vi′,j′ , E))
Output: shortest path p = [p1, p2, · · · , pn]

Initialize p1 = i, k = 1.
while pk 6= j do

if |{l : distl,j + wpk,l ≤ distpk,j}| > 0 then
pk+1 = arg minl:distl,j+wpk,l≤distpk,j |distl,j + wpk,l − distpk,j |.

else
return p = []

end if
k = k + 1.

end while
return p

GNN(Gi′,j′) = GNN((Vi′,j′ , E)), where Vi′,j′ represents the one-hot node attributes when nodes
i′ and j′ are the source and target nodes. For further convenience, we also defined wi′,j′ as the weight
of edge connecting node i′ and node j′ (wi′,j′ =∞ if node i′ and node j′ are not connected by an
edge.). Then, the post-processing algorithm sequentially predicts the next node pk+1 of node pk by
minimizing the difference between the predicted shortest path length approximated by GNNs distpk,j
and the length of shortest path predicted by the post-processing method distpk+1,j + wpk,pk+1

. To
further reduce the effect of models’ noises, another constrain is added as distpk+1,j + wpk,pk+1

≤
distpk,j so that the method will always convergence.

D.1.3 Component Counting

In the component counting problem, the model counts the number of connected components of an
undirected graph. To generate a graph with multiple components, we first sample a random integer m
between 1 to 6 as the number of components, and then divide the nodes into m parts. In detail, for
n nodes and m components, we first uniformly sample m − 1 positions from 1 to n − 1 and then
divide the n nodes into m parts by the m− 1 positions. We then connect nodes in each component
using the random graph generator defined in Section D.1.1, e.g., the Erdos-Renyi graph and the
lobster graph. The metric is the accuracy of correct counting. We initialize the node attributes by
random values∈ [0, 1), so that GNNs are powerful enough solve the component counting problem, as
discussed in Section C.4.

D.1.4 Traveler Salesman Problem (TSP)

In the Euclidean travelling salesman problem (TSP), there are several 2D points located in the
Euclidean plane, and the model generates a shortest route to visit each point. The graph is complete.
The weight of an edge is the Euclidean distance between the two ends. Points {(xi, yi)} are uniformly
sampled from {x, y ∈ Z : 1 ≤ x, y ≤ 1000}. We use the standard solver for TSP, Concorde [59], to
calculate the ground truth. The node attributes are the 2D coordinates of each node. We use relative
loss defined the same as the shortest path problem to evaluate the networks.

D.2 Graph-based reasoning tasks

We further evaluate the benefits of our proposals using three graph-based reasoning tasks. We describe
the setups of physical simulation in Section D.2.1, the setups of symbolic Pacman in Section D.2.3,
and the setups of image-based navigation in Section D.2.2.

D.2.1 Physical Simulation

We evaluate the generalizability of our models by predicting the moving patterns between objects in
a physical simulator. We consider an environment similar to Newton’s cradle, also known as called
Newton’s ball, as shown in Figure 7(a): all balls with the same mass lie on a friction-free pathway.

28

(a) Newton’s ball (b) Symbolic PacMan (c) Image-based Navigation

Figure 7: Figure (a) shows a set of Newton’s balls in the physical simulator. The yellow arrow shows
the moving direction of the first ball. Figure (b) is a scene in our symbolic PacMan environment.
Figure (c) illustrates our image-based navigation task in a RPG-game environment.

With the ball at one end moving towards others, our model needs to predict the motion of the balls
of both ends at the next time step. The probability is 50% for balls to collide. We represent the
environment as a chain graph. The nodes of the graph stand for the balls and the edges of the graph
stand for the interactions between two adjacent balls. We fix the number of balls within [4, 34) at the
training phase, while test the networks in environments with 100 nodes.

In detail, we generate samples as follows:

• n− 1 balls with same properties are placed as a chain in the one-dimensional space where
each ball touches its neighbourhoods.

• A new ball moves towards the n− 1 balls from left position x with constant speed v.

• The model needs to predict each ball’s position and speed after one time step.

The radius of balls, r, is set to 0.1 and the positions are normalized so that the origin is in the middle
of n− 1 balls. The left ball’s position x is set so that its distance to the most left ball among the other
n− 1 balls is uniformly sampled between 0 and 200r. The left ball’s speed v is uniformly sampled
between 0 and 200r. Note that the left ball may or may not collide with the other balls depending on
its positions and weights. The probability is 50% for balls to collide.

Since the n− 2 balls in the middle will not change their positions or speeds in any cases, we simplify
the output to the positions and speeds of left and right balls. To avoid trivial solutions, we still force
the models to predict positions and speeds at the node level, which means no global readout modules
are allowable.

D.2.2 Image-based Navigation

We show benefits of the differentiability of a generalizable reasoning module using the image-based
navigation task, as illustrated in Figure 7(c). The model needs to plan the shortest route from source
to target on 2D images with obstacles. However, the properties of obstacles are not given as a prior
and the model must discover them based on image patterns during training.

We simplify the task by defining each pixel as obstacles merely according to its own pixel values.
Specially, we assign random heights from [0, 1) to pixels in 2D images. The agent can’t go through
pixels with heights larger than 0.8 during navigation. The cases where no path exists between the
source node and the target node are abandoned. We represent the image by a grid graph. Each node
corresponds to a pixel. The edge attributes are set to one. The node attributes are the concatenation
of pixel values and the one-hot embedding of node’s categories (source/target/others). Note that, for
more complex tasks, the node attributes can also include features extracted by CNNs.

In detail, we generate samples as follows:

• n × n grid is first generated. Each node is connected to its left, right, up, and bottom
neighbourhoods. (The boundary situations are omitted for simplicity)

• The height, hi, is uniformly sampled between 0 and 1, and is then assigned to node i. Nodes
with heights larger than 0.8 can’t be visited.

29

5 10 16 33
map-size

0

20

40

60

80

sh
or

te
st

 p
at

h
le

ng
th

Figure 8: Illustration of the properties of the datasets for image-based navigation. Box plots are
utilized to visualize the distributions of the lengths of the shortest path between two random nodes
for each map-size. The shortest path lengths increase with the map sizes.

• The source node and the target node are uniformly sampled from node pairs that have height
less than 0.8 and are connected.

The node attributes are their heights and the one-hot encodings of their categories (i.e. source, target,
or others). The edge attributes are all ones. The properties of datasets are visualized in Figure 8.

D.2.3 Symbolic Pacman

To show that our iterative module can improve reinforcement learning, we construct a symbolic
PacMan environment with similar rules to the PacMan in Atari [47]. As shown in Figure 7(b), the
environment contains a map with dots and walls. The agent starts at one position and at each step it
can move to one of neighboring grids. The agent will receive reward of 1 when it reaches one dot and
“eats” the dot. The discount factor is set to 0.9. The agent needs to figure out a policy to quickly “eat”
all dots while avoiding walls on the map to maximize the return.

In detail, we generate random environments as follows:

• Maze of size 16× 16 is first generated.
• nw walls of length 3 are then generated.
• The walls’ directions are assigned randomly as vertical or horizontal.
• The walls’ positions are uniformly sampled from all feasible ones regardless of overlappings.
• nd dots are further generated with positions uniformly sampled from positions that are not

occupied by walls.
• one agent is at last generated with positions uniformly sampled from non-occupied ones.

The model then controls the agent to navigate in the maze to eat all dots. The action space is [left,
right, up, down]. The agent will not move if the action is infeasible such as colliding with the walls.
The game will stop if the agent has eaten all dots or has exceeded the maximum time step, which is
16× 16× (nd + 1). A new environment will be generated afterwards. The metric is then the success
rates of eating dots:

number of eaten dots
number of reachable dots

At each step, landmarks are placed on each corner of the shortest paths from the agent to dots. The
input state is then a graph with the agent, dots, and landmarks as nodes. The node attributes are their

30

positions plus one-hot encodings of their categories. The positions are normalized so that the agent is
at the origin. The edge weights are set as the Manhattan distance between every two nodes.

We train our models using the double DQN [49] with value networks replaced by our backbones. The
reward for eating each dot is 1 and no penalty for colliding with walls. The discount is set to 0.9 for
each time step to encourage faster navigation. The exploration probability is 0.1 and the warm-up
exploration steps are 1000. Value networks are trained every 4 time steps and updated every 200 time
steps. The size of replay buffer is 10000. The batch size is 32 and the learning rate is 0.0002. Models
are tested on 200 different environments and the averaged performance is reported.

The network architectures are as follows: 2-layer MLP with leaky ReLU for feature embedding,
GNN/CNN modules for message passing, max pooling for readout, and 1-layer FC for predicting the
Q values. The hidden sizes are 64. We compare our IterGNNs with PointNet [50], GCN [38], and
CNNs. For the PointNet model, the GNN modules are identities by definition. For the GCN and CNN
models, we compare the performance of their 1/3/5/7/9-layer variants and report the best of them.
We also compare the choice of the kernel sizes of CNNs among 3/5/7 and report the best of them.

D.3 Graph Classification

Note that the abilities of models to utilize information of the long-term relationships are necessary
for accurately solving most of the previous tasks and problems. Therefore, the benefits of adaptive
and unbounded depths introduced by our iterative module are distinguished. In this sub-section, we
show that our IterGNN can also achieve competitive performance on graph-classification benchmarks,
demonstrating that our iterative module does not hurt the standard generalizability of GNNs while
improving their generalizability w.r.t. graph scales. The results are presented in Section E.3.

In detaile, we evaluate models on five small datasets, which are two social network datasets (IMDB-B
and IMDB-M) and three bioinformatics datasets (MUTAG, PROTEINS and PTC). Readers are
referred to [40] for more descriptions of the properties of datasets. We adopt the same evaluation
method and metrics as previous state-of-art [40], such as 10-fold cross validation. The dataset
splitting strategy and pre-processing methods are all identical to [40] by directly integrating their
public codes1.

Regarding the models, we adopt the previous state-of-art, GIN [40] as GN-blocks and the JK connec-
tions [60] plus average/max pooling as the readout module. To integrate the iterative architecture, we
wrap each GN-block in original backbones with the iterative module with maximum iteration number
equal to 10. The tunable hyper-parameters include the number of IterGNNs, the epoch numbers, and
whether or not utilizing the random initialization of node attributes.

D.4 Models and Baselines

We follow the common practice of designing GNN models as presented in Section F.2. We utilize
a 2-layer MLP for node attribute embedding and use a 1-layer MLP for prediction. The max/sum
poolings are adopted as readout functions to summarize information of a graph into one vector.

To build the core GNN module, we need to specify three properties of GNNs: the GNN layers, the
paradigms to compose GN-blocks, and the prior, as stated in Section F.2. In our experiments, we
explore the following options for each property:

• GNN layers: PathGNN layers and two baselines that are GCN [38] and GAT [39].

• Prior: whether or not apply the homogeneous prior

• Paradigm to compose GN-blocks: our iterative module; the simplest paradigm that stacks
multiple GNN layers sequentially; the ACT algorithm [34]; and the fixed-depth shared-
weights paradigm, as described in the main body.

For the homogeneous prior, we apply the prior to the node-wise embedding module, the readout
module, and the final prediction module as well for most problems and tasks. However, for problems
whose solutions are not homogeneous (e.g. component counting), we only apply the homogeneous
prior to the core GNN module.

1https://github.com/weihua916/powerful-gnns

31

In detail, models are specified by the choices of the previous properties. The corresponding models
and their short names are as follows:

• GCN, GAT: Models utilizing the multi-layer architecture (i.e. stacking multiple GN-blocks)
with GCN [38] or GAT [39] as GN-blocks. The homogeneous prior is not applied.

• Path / Multi-Path: Models utilizing the multi-layer architecture and adopting PathGNN as
defined in Section C.2 as GN-blocks. No homogeneous prior is applied.

• Homo-Path / Multi-Homo-Path: Models utilizing the multi-layer architecture and adopting
PathGNN as GN-blocks. And the homogeneous prior is applied on all modules unless
otherwise specified.

• Iter-Homo-Path / Iter-HP: Models utilizing the iterative module as described in Section C.1.2
and adopting PathGNN as GN-blocks. The homogeneous prior is applied on all modules
unless otherwise specified.

• Shared-Homo-Path, ACT-Homo-Path: Models utilizing the fixed-depth and shared-weights
paradigm (i.e. repeating one GN-block for multiple times) and the adaptive computation
time algorithm [34], respectively. PathGNN and the homogeneous prior are all applied.

• Iter-Path: Same as Iter-Homo-Path except that no homogeneous prior is applied.

• Iter-GAT: Models utilizing our iterative module and adopting GAT as GN-blocks. No
homogeneous prior is applied.

For most problems, max pooling is utilized as the readout function and we use only one IterGNN to
build the core graph neural networks. The homogeneous prior is applied to all modules. However, for
component counting, sum pooling is utilized as the readout function and two IterGNNs are stacked
sequentially, since two iteration loops are usually required for component-counting algorithms (one
for component assignment and one for counting). We utilize the node-wise IterGNN to support
unconnected graphs as introduced in Section C.1.1. The homogeneous prior is only applied to the
GNN modules but not the embedding module and count prediction module, because the problem
is not homogeneous. Random initialization of node attributes is also applied to improve GNNs’
representation powers as analyzed in Section C.4.

D.5 Training Details

All models are trained with the same set of hyper-parameters: the learning rate is 0.001, and the
batch size is 32. We use Adam as the optimizer. The hidden neuron number is 64. For models
using the iterative module or the ACT algorithm, we train the networks with 30 maximal iterations
and test them with no additional constraints. For the fixed-depth shared-weights paradigm, we train
the networks with 30 iterations and test them with 1000 iterations (maximum node numbers in the
datasets). The only two tunable hyper-parameter within our proposals are the epoch number=20,
40, · · · , 200 and the degree of flexibilities of PathGNN, each corresponding to one variation of the
PathGNN layer as described in Section C.2. Another hyper-parameter within the ACT algorithm [34]
is τ = 0, 0.1, 0.01, 0.001. We utilize the validation dataset to select the best hyper-parameter and
report its performance on the test datasets.

E Experimental results

We present experimental results that are omitted in the main body due to the space limitation in
Section E.1.1. We then analyze the iteration numbers learned by ACT and our models in Section E.1.2.
In Section E.2, we present the generalization performances of IterGNN, GCN and PointNet for the
symbolic Pacman task in environments with different number of dots and of walls.

Other than those generalization performance w.r.t. scales, we evaluate the standard generalizability of
our models on five graph classification benchmarks. As shown in Section E.3, our Iter-GIN achieves
competitive performance to the state-of-art GIN [40]. We also verifies the claim in Section C.4 stating
that regular graphs, which can not be distinguished by WL-test, can be distinguished by IterGNNs
plus random initialization of node attributes, in Section E.4.

32

Table 4: Generalization performance on graph algorithm learning and graph-related reasoning.
Models are trained on graphs of sizes within [4, 34) and are tested on graph of larger sizes such as 100
(for the shortest path problem and the TSP problem) and 500 (for the component counting problem).
The metric for the shortest path problem and the TSP problem is the relative loss. The metric for the
component counting problem is the accuracy.

Shortest Path - weighted Component Cnt. TSP
Models ER PL KNN Lob ER Lob 2D

GCN [38] 0.1937 0.202 0.44 0.44 0.0% 0.0% 0.52
GAT [39] 0.1731 0.127 0.26 0.28 24.4 % 0.0% 0.18

Path (ours) 0.0014 0.084 0.16 0.29 82.3% 77.2% 0.16
Homo-Path (ours) 0.0008 0.015 0.07 0.27 91.9% 83.9% 0.14

Iter-Homo-Path (ours) 0.0007 0.003 0.03 0.02 86.6% 95.4% 0.11

E.1 Solving graph theory problems

E.1.1 Generalize w.r.t. graph sizes

We provide the omitted generalization performance of models on the weighted shortest path problem
with PL and KNN as generators in Table 4. Each of our proposals help improve the generalizability
of models with respect to graph sizes and graph diameters. Our final Iter-Homo-Path model largely
outperforms the other models regarding the generalizability w.r.t. scales.

E.1.2 The iteration numbers learned by ACT and our iterative module

We first analyze the ACT [34] algorithm and show that it is easy for ACT to learn small iteration
numbers. We then explain why the minimum depth of GNNs for accurately predicting the lengths
l of the shortest path is l/2 to show that our Iter-Homo-Path model actually learns an optimal and
interpretable stopping criterion. At last, we evaluate the benefits of the decaying mechanism of our
iterative module as described in Section C.1.2.

The iteration numbers learned by ACT are usually small. As shown in Figure 9, the
ACT-Homo-Path model learns much smaller iteration numbers than other models. It is because
of the formulations of the ACT algorithm. In detail, the ACT algorithm considers a different random
process from our iterative module while designing the stopping criterion. The expected output has the
form as

∑k−1
i=1 c

ihi+ (1−
∑k−1
i=1 c

i)hk. The notations are the same as our iterative module described
in the main body. And the stopping criterion is

∑k
i=1 c

i > 1. Compared with the expected output∑k
j=1 c

jhj
∏j−1
i=1 (1− ci) and the stopping criterion

∏k
i=1(1− ci) < ε of our iterative module, it is

generally easier for the stopping criterion of ACT to be satisfied since 1−
∑k
i=1 c

i <
∏k
i=1(1− ci)

if k > 1 and 0 < ci < 1 for all i <= k. In the paper that proposes the ACT algorithm [34], the
author also states similar intuitions that the formulation in our iterative module will not stop in a
few steps. In fact, as far as we know, all works [34, 35, 36] that utilize the ACT algorithm adopt a
noisy regularization term to encourage fewer iteration numbers. They have distinct motivations and
objectives from our work. For example, most of them are designed for more efficiencies by fewer
iterations [35, 36]. On the other hand, our iterative module is designed to improve the generalizability
of GNNs with respect to scales by generalizing to much larger iterations.

The minimum depth of GNNs to accurately solve the unweighted shortest path problem. The
minimum depth of GNNs to accurately predict the shortest path whose length is l is l/2. The reason
is that, due to the message-passing nature of GN-blocks, l-layer GNNs can at most summarize
information of the shortest paths whose lengths are smaller than 2l + 1. Therefore, if models can’t
iterate for distance/2 times, they can’t collect enough information for making an accurate prediction
of the shortest path lengths, but can only guess based on the graph’s global properties (e.g. the
number of nodes and edges) instead. As illustrated in Figure 9, our model, Iter+homo+decay, i.e. the
Iter-Homo-Path model, learns the optimal stopping criterion, whose iteration numbers are equal to
half of the shortest path length. In other words, it achieves the theoretical lower bound of the iteration
numbers for accurate predictions given the message-passing nature of GN-blocks.

33

0 100 200 300 400 500
distance

0

200

400

600

800

1000

ite
ra

tio
n

nu
m

be
r Multi

Shared
ACT
IterGNN+homo+decay
IterGNN+homo
IterGNN+decay
1
2Distance

Figure 9: The iteration numbers of GNN layers w.r.t. the distances from the source node to the target
node for the unweighted shortest path problem. All of them utilize Homo-Path as the backbone
and change the paradigm to compose GN-blocks, except for the "IterGNN+decay" model. Multi
denotes the simplest paradigm that stacks GN-blocks sequentially. The iteration numbers for the
ACT algorithm and for the IterGNN models are all adaptive to the inputs and the stopping criterions
are leanred during training. Models are trained on graphs of sizes [4, 34) while tested on graphs
of diameters 500. The theoretical lower bound of iteration numbers for accurate prediction, i.e.
distance/2, is also plotted.

The benefits of the decaying mechanism of our iterative module. Let’s compare the performance
of IterGNN+homo+decay and IterGNN+homo in Figure 9, to verify the benefits of the decaying
mechanism. Although IterGNN+homo is still able to generalize to the number of iterations as large as
100, it can not generalize to much larger iteration numbers such as 200 or 2000 without the decaying
mechanism. Models with fewer iteration numbers than the lower bound, distance/2, theoretically
lack powers for accurately predicting the shortest paths of lengths larger than l. The success rate of
IterGNN+homo is 67.5%, which is much smaller than the success rate of IterGNN+homo+decay
100%, for predicting the shortest path on lobster graphs of size 500. The worse performance of
IterGNN+homo than IterGNN+homo+decay suggests the effectiveness of our decaying mechanism
for improving the generalizability of models with respect to graph scales.

E.2 Symbolic Pacman

The experimental setups are presented in Section D.2.3. Note that, unlike the original Atari PacMan
environment, our environment is more challenging because we randomly sample the layout of maps
for each episode and we test models in environments with different numbers of dots and walls. The
agent can not just remember one policy to get successful but needs to learn to do planning according
to the current observation.

Table 5, Table 6, and Table 7 show the performance of IterGNN, GCN [38] and PointNet [50],
respectively, in environments with different number of walls and dots. Our IterGNN demonstrates
remarkable generalizability among different environment settings, as stated in Table 5. It successfully
transfers policies to environments with different number of dots and different number of walls.
IterGNN performs much better than the GCN and PointNet baselines, demonstrating that our proposals
improve the generalizability of models. GCN performs the worst probably because of the unsuitable
strong inductive bias encoded by the normed-mean aggregation module.

E.3 Graph Classification

At last, we evaluate models on standard graph classification benchmarks to show that our proposals
do not hurt the standard generalizability of GNNs while improving their generalizability w.r.t. scales.
More descriptions of the task are available in [40]. The experimental setups are presented in
Section D.3.

34

Table 5: Generalization performance of IterGNN for symbolic Pacman. Metric is the success rate
of eating dots. Models are trained in environments with 10 dots and 8 walls and are tested in
environments with different number of walls and dots.

#wall
#dots 1 5 10 15 20

0 1.00 1.00 0.99 0.99 1.00
3 0.95 1.00 0.98 0.94 0.98
6 0.90 0.95 0.94 0.97 0.98
9 0.80 0.92 0.95 0.95 0.93

12 0.60 0.96 0.97 0.98 0.93
15 0.75 0.92 0.94 0.95 0.97

Table 6: Generalization performance of GCN for symbolic Pacman. Metric is the success rate
of eating dots. Models are trained in environments with 10 dots and 8 walls and are tested in
environments with different number of walls and dots.

#wall
#dots 1 5 10 15 20

0 0.05 0.23 0.09 0.07 0.05
3 0.10 0.23 0.20 0.15 0.04
6 0.00 0.32 0.17 0.09 0.06
9 0.20 0.27 0.23 0.06 0.10

12 0.05 0.18 0.26 0.13 0.03
15 0.05 0.17 0.23 0.15 0.08

As stated in Table 8, our model performs competitively with the previous state-of-art backbone,
GIN, on all five benchmarks. It suggests that our iterative module is a safe choice for improving
generalizability w.r.t. scales while still maintaining the performance for normal tasks. Note that, due
to the shortage of time, little hyper-parameter search was conducted in our experiments. Default
hyper-parameters such as learning rate equal to 0.001 and hidden size equal to 64 were adopted.
Therefore, the performance of Iter-GIN is potentially better than those stated in Table 8.

E.4 Effectiveness of Random Initialization

As discussed in Section C.4, we adopt random initialization to improve GNNs’ representation powers
especially for solving graph-related problems such as component counting and graph diameters. The
argument is based on that non-isomorphic regular graphs with random initialized node attributes
are distinguishable by GNNs, i.e. GNNs can distinguish sets of graphs as illustrated in Figure 5(d).
Although it has been proved theoretically in the bounded settings [45, 46], we further verify its
effectiveness in practice.

The task is then as simple as a binary classification problem to distinguish regular graphs as shown in
Figure 5(a) and Figure 5(b). 10000 samples are generated for training with graph structures uniformly
sampled from two regular graphs and the node attributes uniformly sampled between 0 and 1. One
thousand samples are then generated randomly for test. No validation set is needed as we do not

Table 7: Generalization performance of PointNet for symbolic Pacman. Metric is the success rate
of eating dots. Models are trained in environments with 10 dots and 8 walls and are tested in
environments with different number of walls and dots.

#wall
#dots 1 3 6 9 12 15

2 0.82 0.58 0.39 0.32 0.34 0.29
4 0.72 0.48 0.31 0.25 0.24 0.22
6 0.71 0.31 0.36 0.24 0.19 0.14
8 0.60 0.36 0.21 0.20 0.20 0.28

10 0.50 0.33 0.33 0.29 0.16 0.15

35

Dataset GIN Iter-GIN
IMDB-B 75.1±5.1 75.7±4.2
IMDB-M 52.3±2.8 51.8±4.0
MUTAG 89.4±5.6 89.6±8.6

PROTEINS 76.2±2.8 76.3±3.4
PTC 64.6±7.0 64.5±3.8

Table 8: The performance of our iterative module on graph classification on five popular benchmarks.
Iter-GIN is built by wrapping each GIN module in the previous state-of-art method [40] using our
iterative module. Metric is the averaged accuracy and STD in 10-fold cross-validation.

perform hyper-parameter tuning. Experimental results show that our Iter-HomoPath model achieves
100% accuracy for distinguishing both pairs of non-isomorphic regular graph.

F Backgrounds - Graph Neural Networks

In this section, we briefly describe the graph neural networks (GNNs). We first present the GN blocks,
which generalize many GNN layers, in Section F.1 and then present the common practice of building
GNN models for graph classification/regression in Section F.2. The notations and terms are further
utilized while describing PathGNN layers in Section C.2 and while describing the models/baselines
in our experiments in Section D.4.

F.1 Graph Network Blocks (GN blocks)

We briefly describe a popular framework to build GNN layers, called Graph Network blocks (GN
blocks) [15]. It encompasses our PathGNN layers presented in Section C.2 as well as many state-of-
art GNN layers, such as GCN [38], GAT [39], and GIN [40]. Readers are referred to [15] for more
details. Note that we adopt different notations from the main body to be consistent with [15]. Also
note that, even when the global attribute is utilized, the fixed-depth fixed-width GNNs still lose a
significant portion of powers for solving many graph problems as proved in [19]. For example, the
minimum depth of GNNs scales sub-linearly with the graph sizes for accurately verifying a set of
edges as the shortest path or a s-t cut, given the message passing nature of GNNs.

The input graphs are defined as G = (u, V, E) with node attributes V = {vi, i = 1, 2, . . . , Nv}, edge
attributes E = {(ek, sk, rk), k = 1, 2, . . . , Ne}, and the global attribute u, where sk and rk denote
the index of the sender and receiver nodes for edge k, u, vi, and ek represent the global attribute
vector, the attribute vector of node i, and the attribute vector of edge k, respectively.

The GN block performs message passing using three update modules φe, φv, φu and three aggregation
modules ρe→v, ρe→u, ρv→u as follows:

1. Node sk sends messages e′k to the receiver node rk, which are updated according to the
related node attributes v, edge attributes e, and global attributes u.

e′k = φe(ek, vrk , vsk ,u), k = 1, 2, . . . , Ne

2. For each receiver node i, the sent messages are aggregated using the aggregation module.

ē′i = ρe→v({e′k|rk = i}

3. The aggregated messages are then utilized for updating the node attribute together with the
related node attributes vi and global attributes u.

v′i = φv(ē′i, vi,u)

4. The sent messages e′k can also be aggregated for updating the global attribute u as

ē′ = ρe→u({e′k, k = 1, 2, . . . , Ne}

5. The node attribute v′i can be aggregated for updating the global attribute u as well.

v̄′ = ρv→u({v′i, i = 1, 2, . . . , Nv}

36

6. The global attribute u are updated according to the aggregated messages ē′, aggregated node
attributes v̄′, and previous global attribute u.

u′ = φu(ē′, v̄′,u)

φe is often referred as the message module, ρe→v as the aggregation module, φv as the update
module, ρe→u and ρv→u as the readout modules, in many papers. The three update modules are
simple vector-to-vector modules such as multi-layer perceptrons (MLPs). The three aggregation
modules, on the other hand, should be permutation-invariant functions on sets such as max pooling
and attentional pooling [61, 62].

F.2 Composing GN blocks for graph classification / regression

We follow the common practice [15, 31, 40] in the field of supervised graph classification while
building models and baselines in our experiments. Typically, the models are built by sequentially
stacking the node-wise embedding module, the core GNN module, the readout function, and the
task-specific prediction module. The node-wise embedding module corresponds to GN blocks that
are only composed of function φv for updating node attributes. More intuitively, it applies the same
MLP module to update all node attribute vectors. The core GNN module performs message passing
to update all attributes of graphs. The readout function corresponds to GN blocks that only consist
of the readout modules such as ρe→u and ρv→u to summarize information of the whole graph into
a fixed-dimensional vector u. The task-specific prediction module then utilizes the global attribute
vector u to perform the final prediction, such as predicting the number of connected components or
the Q-values within the symbolic Pacman environment.

We need to specify three properties while designing the core GNN modules: (1) the internal structure
of GN blocks; (2) the composition of GN blocks; and (3) the prior that encodes the properties of the
solutions of the problem.

• The internal structure of GN blocks defines the logic about how to perform one step of
message passing. It is usually specified by selecting or designing the GNN layers.

• The composition of GN blocks defines the computational flow among GN-blocks. For
example, the simplest paradigm is to apply multiple GN blocks sequentially. Our iterative
module introduces the iterative architecture into GNNs. It applies the same GN block for
multiple times. The iteration number is adaptively determined by our iterative module.

• The prior is usually specified by adopting the regularization terms. For example, regularizing
the L2 norm of weights can encode the prior that GNNs representing solutions of the problem
usually have weights of small magnitudes. Regularizing the L1 norm of weights can encode
prior about sparsity. We can utilize the HomoMLP and HomoGNN as described in the main
body to encode the homogeneous prior that the solutions of most classical graph problems
are homogeneous functions.

37

	1 Introduction
	2 Related Work
	3 Backgrounds
	4 Method
	4.1 Iterative module
	4.2 Homogeneous prior
	4.2.1 Theoretical analysis of HomoGNN and HomoMLP

	4.3 Path graph neural networks

	5 Experiments
	5.1 Solving graph theory problems
	5.2 General reasoning tasks

	6 Conclusion
	7 Acknowledgements
	8 Broader Impact
	A Organization of the Appendices
	B Theoretical analysis
	B.1 Representation powers of iterative module
	B.2 Homogeneous prior
	B.2.1 Proof of Theorem 1: generalization error bounds of homogeneous neural networks
	B.2.2 HomoMLP and HomoGNN are homogeneous functions
	B.2.3 Proof of Theorem 2: representation powers of HomoMLP

	C Method
	C.1 Iterative module
	C.1.1 Node-wise iterative module
	C.1.2 Decaying confidence mechanism
	C.1.3 Efficient train and inference by IterGNNs

	C.2 Path Graph Neural Networks
	C.3 Homogeneous prior
	C.4 Random Initialization

	D Experiment Setups
	D.1 Graph theory problems
	D.1.1 Properties of Graph Generators
	D.1.2 Shortest Path
	D.1.3 Component Counting
	D.1.4 Traveler Salesman Problem (TSP)

	D.2 Graph-based reasoning tasks
	D.2.1 Physical Simulation
	D.2.2 Image-based Navigation
	D.2.3 Symbolic Pacman

	D.3 Graph Classification
	D.4 Models and Baselines
	D.5 Training Details

	E Experimental results
	E.1 Solving graph theory problems
	E.1.1 Generalize w.r.t. graph sizes
	E.1.2 The iteration numbers learned by ACT and our iterative module

	E.2 Symbolic Pacman
	E.3 Graph Classification
	E.4 Effectiveness of Random Initialization

	F Backgrounds - Graph Neural Networks
	F.1 Graph Network Blocks (GN blocks)
	F.2 Composing GN blocks for graph classification / regression

